hell yes
library(dplyr) library(doBy) library(lubridate) library(ggplot2) library(ggforce) library(tidyverse) library(lme4) library(nlme) library(equatiomatic) library(sjPlot) library(ggeffects) library(LMERConvenienceFunctions) age <- function(birth, base = Sys.Date()){ i <- interval(birth, base) p <- as.period(i) year(p) } setupDataframes <- function(df, geneStat) { df <- order_by(~usubjid, data = df) %>% mutate(geneStatus = geneStat) %>% mutate(visdat = as.POSIXct.Date(visdat, format = "%Y-%m-%d")) %>% arrange(visdat) %>% group_by(usubjid) %>% mutate( diffInDays = difftime(visdat, lag(visdat, 1, default = visdat[1]), unit = "days") %>% as.numeric() %>% cumsum() ) df <- order_by(~usubjid, data = df) return(df) } addAgeColumn <- function(df, dat) { df <- df %>% mutate ( age = age(enrollhd_demog$dm1__brthdtc[match(usubjid, enrollhd_demog$usubjid)], dat) ) return(df) } addIscedColumn <- function(df) { df$cleanID <- gsub('["=]', '', df$usubjid) temp <- Baseline_Variable_Form_Data names(temp)[names(temp) == "usubjid"] <- "cleanID" temp <- temp %>% select(cleanID, isced) return(left_join(df, temp, by = "cleanID")) } addBaselineAgeColumn <- function(df) { df_first_visit <- df %>% group_by(usubjid) %>% slice(1) %>% select(age) df <- inner_join(df, df_first_visit, by = "usubjid") %>% rename(baselineAge = age.y) return(df) } mergeDataFrames <- function(isControl) { # df1 is baseline, df2 is follow ups if (isControl == 0) { df1 <- anti_join(BL_enrollhd_cognitive, enrollhd_cag, by = "usubjid") #all subjects that are not in cag df1 <- addAgeColumn(df1, df1$visdat) df2 <- anti_join(FU_enrollhd_cognitive, enrollhd_cag, by = "usubjid") df2 <- addAgeColumn(df2, df2$visdat) df <- setupDataframes(rbind(df1, df2), 0) df <- addIscedColumn(df) df <- addBaselineAgeColumn(df) } else { temp <- enrollhd_cag %>% select(usubjid) df1 <- inner_join(BL_enrollhd_cognitive, temp, by = "usubjid") df1 <- addAgeColumn(df1, df1$visdat) #adding age variable from demographic to follow up data frame df2 <- inner_join(FU_enrollhd_cognitive, temp, by = "usubjid") df2 <- addAgeColumn(df2, df2$visdat) df <- setupDataframes(rbind(df1, df2), 1) df <- addIscedColumn(df) df <- addBaselineAgeColumn(df) } return(df) } # set dataframes up controlDf <- mergeDataFrames(0) genePositiveDf <- mergeDataFrames(1) fullDf <- rbind(genePositiveDf, controlDf) # set factor levels fullDf$geneStatus = as.factor(fullDf$geneStatus) fullDf$geneStatus <- relevel(fullDf$geneStatus, ref = "0") fullDf$isced <- as.factor(fullDf$isced) fullDf$isced <- relevel(fullDf$isced, ref = "3") # if AIC and BIC lower then that is better sdmt1Model = lme(sdmt1 ~ diffInDays * geneStatus * isced * baselineAge, random = (~1|usubjid), data = fullDf, na.action = na.exclude) ggpredict(sdmt1Model, c("diffInDays", "geneStatus", "isced", "baselineAge")) %>% plot() sitModel = lme(sit1 ~ diffInDays * geneStatus * isced * baselineAge, random = (~1|usubjid), data = fullDf, na.action = na.exclude) ggpredict(sitModel, c("diffInDays", "geneStatus", "isced", "baselineAge")) %>% plot()
Leave a Comment