Untitled
unknown
python
3 years ago
2.6 kB
3
Indexable
Never
import torch from torch import nn class ConvBlock(nn.Module): def __init__( self, in_channels, out_channels, discriminator=False, use_act=True, use_bn=True, **kwargs, ): super().__init__() self.use_act = use_act self.cnn = nn.Conv2d(in_channels, out_channels, **kwargs, bias=not use_bn) self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity() self.act = ( nn.LeakyReLU(0.2, inplace=True) if discriminator else nn.PReLU(num_parameters=out_channels) ) def forward(self, x): if self.use_act: return self.act(self.bn(self.cnn(x))) else: return self.bn(self.cnn(x)) class ResidualBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.block1 = ConvBlock( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) self.block2 = ConvBlock( in_channels, in_channels, kernel_size=3, stride=1, padding=1, use_act=False, ) def forward(self, x): out = self.block1(x) out = self.block2(out) return out + x class UpsampleBlock(nn.Module): def __init__(self, in_c, scale_factor): super().__init__() self.conv = nn.Conv2d(in_c, in_c * scale_factor ** 2, 3, 1, 1) self.ps = nn.PixelShuffle(scale_factor) # in_c * 4, H, W --> in_c, H*2, W*2 self.act = nn.PReLU(num_parameters=in_c) def forward(self, x): return self.act(self.ps(self.conv(x))) class Generator(nn.Module): def __init__(self, in_channels=3, num_channels=64, num_blocks=18): super().__init__() self.initial = ConvBlock(in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False) self.residuals = nn.Sequential(*[ResidualBlock(num_channels) for _ in range(18)]) self.convblock = ConvBlock(num_channels, num_channels, kernel_size=3, stride=1, padding=1, use_act=False) self.upsamples = nn.Sequential(UpsampleBlock(num_channels, 2), UpsampleBlock(num_channels, 2)) self.final = nn.Conv2d(num_channels, in_channels, kernel_size=9, stride=1, padding=4) def forward(self, x): initial = self.initial(x) x = self.residuals(initial) x = self.convblock(x) + initial x = self.upsamples(x) return torch.sigmoid(self.final(x))