Untitled
unknown
plain_text
3 years ago
929 B
9
Indexable
import torch
from torch.autograd import gradcheck
# Define your model and loss function
model = YourModel()
loss_fn = YourLossFunction()
# Define your optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Training loop
for epoch in range(num_epochs):
for batch_idx, (inputs, targets) in enumerate(train_loader):
# Forward pass
outputs = model(inputs)
loss = loss_fn(outputs, targets)
# Backward pass
optimizer.zero_grad()
loss.backward()
# Check gradients
inputs.requires_grad_()
assert gradcheck(loss_fn, inputs), "Gradient check failed!"
# Update parameters
optimizer.step()
# Print loss and other metrics
if batch_idx % print_interval == 0:
print("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}"
.format(epoch+1, num_epochs, batch_idx+1, len(train_loader), loss.item()))
Editor is loading...