Untitled
unknown
plain_text
a year ago
929 B
1
Indexable
Never
import torch from torch.autograd import gradcheck # Define your model and loss function model = YourModel() loss_fn = YourLossFunction() # Define your optimizer optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # Training loop for epoch in range(num_epochs): for batch_idx, (inputs, targets) in enumerate(train_loader): # Forward pass outputs = model(inputs) loss = loss_fn(outputs, targets) # Backward pass optimizer.zero_grad() loss.backward() # Check gradients inputs.requires_grad_() assert gradcheck(loss_fn, inputs), "Gradient check failed!" # Update parameters optimizer.step() # Print loss and other metrics if batch_idx % print_interval == 0: print("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}" .format(epoch+1, num_epochs, batch_idx+1, len(train_loader), loss.item()))