Untitled
unknown
plain_text
a year ago
2.3 kB
6
Indexable
Never
File "F:\Unstable Difusion\stable-diffusion-webui\modules\call_queue.py", line 56, in f res = list(func(*args, **kwargs)) File "F:\Unstable Difusion\stable-diffusion-webui\modules\call_queue.py", line 37, in f res = func(*args, **kwargs) File "F:\Unstable Difusion\stable-diffusion-webui\modules\txt2img.py", line 53, in txt2img processed = modules.scripts.scripts_txt2img.run(p, *args) File "F:\Unstable Difusion\stable-diffusion-webui\modules\scripts.py", line 407, in run processed = script.run(p, *script_args) File "F:\Unstable Difusion\stable-diffusion-webui\scripts\xyz_grid.py", line 639, in run processed = draw_xyz_grid( File "F:\Unstable Difusion\stable-diffusion-webui\scripts\xyz_grid.py", line 307, in draw_xyz_grid process_cell(x, y, z, ix, iy, iz) File "F:\Unstable Difusion\stable-diffusion-webui\scripts\xyz_grid.py", line 250, in process_cell processed: Processed = cell(x, y, z, ix, iy, iz) File "F:\Unstable Difusion\stable-diffusion-webui\scripts\xyz_grid.py", line 602, in cell res = process_images(pc) File "F:\Unstable Difusion\stable-diffusion-webui\modules\processing.py", line 503, in process_images res = process_images_inner(p) File "F:\Unstable Difusion\stable-diffusion-webui\modules\processing.py", line 653, in process_images_inner samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) File "F:\Unstable Difusion\stable-diffusion-webui\modules\processing.py", line 941, in sample samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) File "F:\Unstable Difusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 319, in sample_img2img noise_sampler = self.create_noise_sampler(x, sigmas, p) File "F:\Unstable Difusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 291, in create_noise_sampler sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() RuntimeError: min(): Expected reduction dim to be specified for input.numel() == 0. Specify the reduction dim with the 'dim' argument.