Untitled

mail@pastecode.io avatar
unknown
plain_text
10 months ago
6.3 kB
5
Indexable
import os
import torch
import wandb
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
import pandas as pd
from datasets import Dataset


wandb.init(
    # set the wandb project where this run will be logged
    project="dfs_searching",
    entity="mm12799",
)

# Fine-tuned model name
new_model = "../models/llama-2-7b-pw_dfs"

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = 64

# Alpha parameter for LoRA scaling
lora_alpha = 16

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "../proofwriter/llama2/results"

# Number of training epochs
num_train_epochs = 3

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 4

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 1e-3

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = 25

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = 1024

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}

from torch import bfloat16, LongTensor, cuda
import transformers
import torch

compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

model_id= "meta-llama/Llama-2-7b-hf"
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'

# Llama 2 Tokenizer
tokenizer =transformers.AutoTokenizer.from_pretrained(model_id)

# Llama 2 Model
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    temperature=0.0,
    do_sample=False,
    quantization_config=bnb_config,
    device_map='auto',
)
model.eval()
print(f"Model {model_id} loaded on {device}")

dataset_path = "/scratch/mm12799/DFS_Prompting/datasets/proof_writer/training_3_5.csv"

df = pd.read_csv(dataset_path)
dataset = Dataset.from_pandas(df)

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
    major, _ = torch.cuda.get_device_capability()
    if major >= 8:
        print("=" * 80)
        print("Your GPU supports bfloat16: accelerate training with bf16=True")
        print("=" * 80)

model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
    lora_alpha=lora_alpha,
    lora_dropout=lora_dropout,
    r=lora_r,
    bias="none",
    task_type="CAUSAL_LM",
)

# Set training parameters
training_arguments = TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim=optim,
    save_steps=save_steps,
    logging_steps=logging_steps,
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    fp16=fp16,
    bf16=bf16,
    max_grad_norm=max_grad_norm,
    max_steps=max_steps,
    warmup_ratio=warmup_ratio,
    group_by_length=group_by_length,
    lr_scheduler_type=lr_scheduler_type,
    report_to="wandb"
)

# Set supervised fine-tuning parameters
trainer = SFTTrainer(
    model=model,
    train_dataset=dataset,
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=packing,
)

# Train model
trainer.train()

# Save trained model
path = new_model
trainer.model.save_pretrained(path)
trainer.tokenizer.save_pretrained(path)
Leave a Comment