Untitled
unknown
plain_text
2 years ago
2.5 kB
18
Indexable
import numpy as np
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# Initialize weights and biases
self.W1 = np.random.randn(self.input_size, self.hidden_size)
self.b1 = np.zeros((1, self.hidden_size))
self.W2 = np.random.randn(self.hidden_size, self.output_size)
self.b2 = np.zeros((1, self.output_size))
def forward(self, X):
# Forward propagation
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
probs = self.softmax(self.z2)
return probs
def backward(self, X, y, learning_rate=0.01):
# Forward propagation
probs = self.forward(X)
# Backpropagation
batch_size = len(X)
delta3 = probs - y
dW2 = np.dot(self.a1.T, delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = np.dot(delta3, self.W2.T) * (self.a1 * (1 - self.a1))
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
# Update weights and biases
self.W1 -= learning_rate * dW1
self.b1 -= learning_rate * db1
self.W2 -= learning_rate * dW2
self.b2 -= learning_rate * db2
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def softmax(self, z):
exp_scores = np.exp(z - np.max(z, axis=1, keepdims=True))
return exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
def squared_error(self, X, y):
# Compute squared error
predictions = self.forward(X)
sq_error = np.mean((predictions - y)**2)
return sq_error
# Generate some random data for testing
np.random.seed(0)
X = np.random.randn(300, 10) # 300 samples, 10 features
y = np.random.randint(0, 2, (300, 2)) # 2 classes (binary labels, one-hot encoded)
# Initialize and train the neural network
input_size = 10
hidden_size = 5
output_size = 2 # Two neurons for binary classification
model = NeuralNetwork(input_size, hidden_size, output_size)
# Training loop
num_epochs = 1000
for epoch in range(num_epochs):
# Forward pass and backward pass
model.backward(X, y, learning_rate=0.01)
# Print the loss
if epoch % 100 == 0:
loss = model.squared_error(X, y)
print(f'Epoch {epoch}, Loss: {loss}')
Editor is loading...
Leave a Comment