Untitled
unknown
plain_text
2 years ago
777 B
8
Indexable
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
import pandas as pd
# Sample dataset
data = {'TransactionID': [1, 2, 3, 4, 5],
'Items': [['A', 'B', 'D'],
['B', 'C'],
['A', 'B', 'E'],
['B', 'E'],
['A', 'C']]
}
df = pd.DataFrame(data)
# Convert the items column to a one-hot encoded format
oht = pd.Series(df['Items']).str.join('|').str.get_dummies()
frequent_itemsets = apriori(oht, min_support=0.2, use_colnames=True)
# Generate the association rules
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
print("Frequent itemsets:")
print(frequent_itemsets)
print("\nAssociation rules:")
print(rules)
Editor is loading...
Leave a Comment