Untitled
plain_text
a month ago
2.8 kB
1
Indexable
Never
def event_prediction(input_event,input_event_type): try: #pdb.set_trace() event_id_list_tf,event_title_list_tf = event_prediction_tfidf(input_event,input_event_type) ##5 inputs , and one user recommendation ;list print("TFIDF Prediction Done") event_id_list_contxt,event_title_list_contxt = event_prediction_context(input_event,input_event_type) print("Contexual Prediction Done") df_pred= pd.DataFrame() df_pred['event_id'] = event_id_list_tf + event_id_list_contxt df_pred['event_title'] = event_title_list_tf + event_title_list_contxt df_pred = df_pred.drop_duplicates(subset=['event_id'], keep='first') df_pred = df_pred.head() event_id_list = df_pred['event_id'].tolist() event_title_list = df_pred[config.target_column].tolist() return event_id_list,event_title_list except: event_id_list = [] event_title_list = [] return event_id_list,event_title_list And I am modifying the code as per my requirements as below- def event_prediction(input_ticket_category, input_ticket_type, input_ticket_item, input_ticket_summary, input_ticket_desc, input_ticket_severity): try: user_recommendation_list = event_prediction_tfidf(input_ticket_category, input_ticket_type, input_ticket_item, input_ticket_summary, input_ticket_desc, input_ticket_severity) ##5 inputs , and one user recommendation ;list print("TFIDF Prediction Done") user_recommendation_list_contxt = event_prediction_context(input_ticket_category, input_ticket_type, input_ticket_item, input_ticket_summary, input_ticket_desc, input_ticket_severity) print("Contexual Prediction Done") df_pred= pd.DataFrame() #df_pred['event_id'] = event_id_list_tf + event_id_list_contxt #df_pred['event_title'] = event_title_list_tf + event_title_list_contxt #df_pred = df_pred.drop_duplicates(subset=['event_id'], keep='first') df_pred = df_pred.head() event_id_list = df_pred['event_id'].tolist() event_title_list = df_pred[config.target_column].tolist() return user_recommendation_list except: event_id_list = [] event_title_list = [] return user_recommendation_list I am not getting what these lines mean - df_pred['event_id'] = event_id_list_tf + event_id_list_contxt df_pred['event_title'] = event_title_list_tf + event_title_list_contxt df_pred = df_pred.drop_duplicates(subset=['event_id'], keep='first') Can you help me how to modify the code as per my requirements as we want only one user_recommendation_list as output