Mıhı
neron
plain_text
a year ago
8.2 kB
4
Indexable
import ccxt
import numpy as np
import pandas as pd
from pandas import DataFrame
import pandas_ta as ta
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import f1_score
from sklearn.utils import resample
import joblib
import os
from datetime import datetime, timedelta, timezone
import time
import logging
from collections import deque
import random
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Binance borsasına bağlanın
exchange = ccxt.binanceusdm()
binance = ccxt.binance({
'enableRateLimit': True,
})
symbols = ['BNB/USDT']
timeframe = '5m'
limit = 500
ma_period = 10
# Tahmin sonuçlarını saklamak için bir liste
predictions_history = []
correct_predictions = 0
total_predictions = 0
learning_rate = 0.1
# Deneyim Havuzu (Experience Replay) için
experience_replay_buffer = deque(maxlen=1000) # Deneyim havuzunun boyutu
batch_size = 128 # Rastgele örnekleme yapılacak örnek sayısı
def remaining_time(clock, timeframe): # bekleme süresinin hesaplanmasında kullanılır.
if timeframe == "5m":
wait_time = (300 - (clock.minute % 5 * 60 + clock.second))
elif timeframe == "15m":
wait_time = (900 - (clock.minute % 15 * 60 + clock.second))
elif timeframe == "30m":
wait_time = (1800 - (clock.minute % 30 * 60 + clock.second))
elif timeframe == "1h":
wait_time = (3600 - (clock.minute * 60 + clock.second))
elif timeframe == "2h":
wait_time = (7200 - (clock.hour % 2 * 3600 + clock.minute * 60 + clock.second))
elif timeframe == "4h":
wait_time = (14400 - (clock.hour % 4 * 3600 + clock.minute * 60 + clock.second))
elif timeframe == "1d":
wait_time = (86400 - (clock.hour * 3600 + clock.minute * 60 + clock.second)) # Günlük için
return wait_time
# Oyun teorisi tabanlı özellikleri hesaplama fonksiyonu
def calculate_game_theory_features(df):
df['price_change'] = df['close'].diff()
df['up_moves'] = np.where(df['price_change'] > 0, 1, 0)
df['down_moves'] = np.where(df['price_change'] < 0, 1, 0)
df['total_up_moves'] = df['up_moves'].cumsum()
df['total_down_moves'] = df['down_moves'].cumsum()
df['volume_change'] = df['volume'].diff().fillna(0)
df['volume_up'] = np.where(df['volume_change'] > 0, 1, 0)
df['volume_down'] = np.where(df['volume_change'] < 0, 1, 0)
df['total_volume_up'] = df['volume_up'].cumsum()
df['total_volume_down'] = df['volume_down'].cumsum()
df = df.dropna() # NaN değerleri olan satırları kaldır
return df
def fetch_and_update_data(symbol, timeframe, limit):
filename = f"{symbol.replace('/', '_')}_{timeframe}.csv"
filepath = os.path.join(os.getcwd(), filename)
df = pd.DataFrame() # df'i başlangıçta boş bir DataFrame olarak tanımlayalım
last_timestamp_ms = None
if os.path.exists(filepath):
try:
df = pd.read_csv(filepath)
if not df.empty:
last_timestamp = df['timestamp'].max()
try:
last_timestamp_ms = int(pd.to_datetime(last_timestamp).timestamp() * 1000)
except ValueError:
last_timestamp_ms = int(last_timestamp)
except Exception as e:
logging.error(f"{filepath} okunurken hata oluştu: {e}")
df = pd.DataFrame() # Eğer hata varsa, df'i yine boş bırak
ohlcv_data = exchange.fetch_ohlcv(symbol, timeframe, since=last_timestamp_ms)
try:
print(f"Çekilen veri sayısı: {len(ohlcv_data)}")
except Exception as e:
print(f"Veri çekme hatası: {e}")
return df
if len(ohlcv_data) > 0:
new_df = pd.DataFrame(ohlcv_data, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
new_df = new_df[:] if not df.empty else new_df # Eğer df zaten veri içeriyorsa son satırı kaldır
df = pd.concat([df, new_df], ignore_index=True) if not df.empty else new_df
df['symbol'] = symbol
# timestamp değerlerini datetime'a dönüştürme ve formatlama
def safe_to_datetime(t):
if isinstance(t, str):
return pd.to_datetime(t)
elif isinstance(t, (int, float)) and t > 1e10:
unit = 'ms' if t > 1e12 else 's'
return pd.to_datetime(t, unit=unit, utc=True).tz_convert('US/Eastern')
else:
raise ValueError(f"Unexpected timestamp format: {t}")
df['timestamp'] = df['timestamp'].apply(safe_to_datetime)
df['timestamp'] = df['timestamp'].apply(lambda x: x.strftime('%Y-%m-%d %H:%M:%S') if pd.notna(x) else None)
# Gösterge hesaplamaları
df['rsi'] = ta.rsi(df['close'], length=14)
bbands = ta.bbands(df['close'], length=20, std=2)
for col in bbands.columns:
df[col] = bbands[col]
df['bollinger_flag'] = np.where(df['close'] > df['BBU_20_2.0'], 1, np.where(df['close'] < df['BBL_20_2.0'], -1, 0))
stoch = ta.stoch(df['high'], df['low'], df['close'], k=14, d=3)
df['stoch_k'] = stoch['STOCHk_14_3_3']
df['stoch_d'] = stoch['STOCHd_14_3_3']
df['stochastic_flag'] = np.where(df['stoch_k'] < 20, -1, np.where(df['stoch_k'] > 80, 1, 0))
macd = ta.macd(df['close'])
for col in macd.columns:
df[col] = macd[col]
df['macd_signal'] = np.where((df['MACD_12_26_9'].shift(1) < df['MACDs_12_26_9'].shift(1)) &
(df['MACD_12_26_9'] > df['MACDs_12_26_9']), 1,
np.where((df['MACD_12_26_9'].shift(1) > df['MACDs_12_26_9'].shift(1)) &
(df['MACD_12_26_9'] < df['MACDs_12_26_9']), -1, 0))
df.to_csv(filepath, index=False)
return df
def train_and_evaluate_model(df):
global correct_predictions, total_predictions, experience_replay_buffer
# Öznitelik ve hedef değişkenleri
X = df.drop(['timestamp', 'symbol', 'close'], axis=1)
y = np.where(df['close'].shift(-1) > df['close'], 1, 0)[:-1]
X = X[:-1]
# Deneyim havuzuna ekleme
for i in range(len(X)):
experience_replay_buffer.append((X.iloc[i], y[i]))
# Rastgele örnekleme (Experience Replay)
if len(experience_replay_buffer) >= batch_size:
batch = random.sample(experience_replay_buffer, batch_size)
X_batch, y_batch = zip(*batch)
X_batch = pd.DataFrame(X_batch)
y_batch = np.array(y_batch)
# Veriyi eğitim ve test olarak ayırın
X_train, X_test, y_train, y_test = train_test_split(X_batch, y_batch, test_size=0.2, random_state=42)
# Aşırı örnekleme
X_train, y_train = resample(X_train, y_train, replace=True, n_samples=len(X_train), random_state=42)
# Model oluşturma
model = GradientBoostingClassifier(learning_rate=learning_rate, n_estimators=100, max_depth=3, random_state=42)
model.fit(X_train, y_train)
# Modelin test verisi üzerindeki tahminleri
y_pred = model.predict(X_test)
f1 = f1_score(y_test, y_pred)
predictions_history.append(y_pred)
# Modelin sonuçları
correct_predictions += np.sum(y_pred == y_test)
total_predictions += len(y_test)
# Tahminin kaydedilmesi
joblib.dump(model, 'trading_model.pkl')
logging.info(f"Model başarıyla kaydedildi. F1 Skoru: {f1:.2f}")
while True:
# Geçerli zaman
current_time = datetime.now(timezone.utc).astimezone()
# Bekleme süresi hesapla
wait_time = remaining_time(current_time, timeframe)
logging.info(f"Kalan süre: {wait_time} saniye")
# Veriyi güncelle
for symbol in symbols:
df = fetch_and_update_data(symbol, timeframe, limit)
# Veriler yeterliyse eğit ve değerlendir
if len(df) >= 100: # 100'den fazla veri noktası varsa
train_and_evaluate_model(df)
# Belirli bir süre bekle
time.sleep(wait_time) # Burada belirlenen bekleme süresince uykuya geçilir
Editor is loading...
Leave a Comment