Untitled
unknown
plain_text
4 years ago
839 B
8
Indexable
def my_cov(*args):
data = np.array([*args],dtype=object)
means = []
n = data.shape[1]
for x,y in enumerate(data):
if x > 0:
if len(data[x-1]) != len(data[x]):
return None
#Creating a means array
for row in data:
means.append(sum(row)/(len(row)))
#Creating a sub array
#for x,y in enumerate(data):
#for i in y:
#print(i)
#i = 0
#print(x,y,means[x])
#print(y[i], means[x])
#print(sum(y)-means[x])
#for i in range(0,n-1):
#for x,y in enumerate(data):
#print(data[x], means[x])
#if x > 0:
#print(sum((data[x-1] - means[x-1])*(data[x] - means[x]))/(n-1)) this is just the cov, but we need the matrix
#print((data[x-1] - means[x-1])*(data[x] - means[x]))Editor is loading...