Untitled
unknown
plain_text
4 years ago
839 B
4
Indexable
def my_cov(*args): data = np.array([*args],dtype=object) means = [] n = data.shape[1] for x,y in enumerate(data): if x > 0: if len(data[x-1]) != len(data[x]): return None #Creating a means array for row in data: means.append(sum(row)/(len(row))) #Creating a sub array #for x,y in enumerate(data): #for i in y: #print(i) #i = 0 #print(x,y,means[x]) #print(y[i], means[x]) #print(sum(y)-means[x]) #for i in range(0,n-1): #for x,y in enumerate(data): #print(data[x], means[x]) #if x > 0: #print(sum((data[x-1] - means[x-1])*(data[x] - means[x]))/(n-1)) this is just the cov, but we need the matrix #print((data[x-1] - means[x-1])*(data[x] - means[x]))
Editor is loading...