Untitled
unknown
plain_text
2 years ago
8.2 kB
15
Indexable
import pandas as pd
from nltk.corpus import stopwords
import string
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from string import digits
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import pdb
import re
from fuzzywuzzy import fuzz
from feature_engineering import *
from param_config import config
from model_loading import loading_model
models = loading_model()
tfidf_matrix,tf_count_matrix,tfidf_vector,count_vector,df_act,Matching_data,embedding_dict,df_act_context = models.load_models()
def extract_combined_info(text):
words = text.split()
info = []
current_info = []
for word in words:
if word.isnumeric():
current_info.append(word)
elif word[0].isupper() and current_info:
current_name = ' '.join(words[words.index(word):])
info.append(current_info + [current_name])
current_info = []
return info
def process_text(text):
# Remove leading numbers using regular expression
trimmed_text = re.sub(r'^\d+\s*', '', text)
return trimmed_text
def extract_role_name(text):
role_name = re.findall(r'\d+\s+([\w\s]+?)\s+[A-Z]', text)
return role_name
def user_recommendation(input_tenant_id,input_ticket_category, input_ticket_type, input_ticket_item, input_ticket_summary, input_ticket_desc):
try:
print("Input Tenant ID from API : ",input_tenant_id)
user_recommendation_list_tfidf = user_recommendation_tfidf(input_tenant_id,input_ticket_category, input_ticket_type, input_ticket_item, input_ticket_summary, input_ticket_desc)
print("TFIDF Prediction Done", user_recommendation_list_tfidf)
processed_recommendations_list =[process_text(text) for text in user_recommendation_list_tfidf]
#print("Processed Recommendations List : ",processed_recommendations_list)
user_recommendation_info = []
for res in processed_recommendations_list:
#print("Res : ",res)
info = extract_combined_info(res)
role_name = extract_role_name(res)
if info:
info[0].append(role_name[0] if role_name else None)
user_recommendation_info.append(info[0])
return user_recommendation_info
except:
user_recommendation_list = []
return user_recommendation_list
def user_recommendation_tfidf(input_tenant_id,input_ticket_category, input_ticket_type, input_ticket_item, input_ticket_summary, input_ticket_desc):
#pdb.set_trace()
global tfidf_matrix,tf_count_matrix,tfidf_vector,count_vector,df_act
## First join 5 parameters andd then call input_data_preprocessing
data_to_be_processed=str(input_tenant_id) + ' ' + str(input_ticket_category) +' ' + str(input_ticket_type) +' ' +str(input_ticket_item) + ' ' + str(input_ticket_summary) + ' ' +str(input_ticket_desc)
## Input Data Preprocessing
input_processed_text = input_data_preprocessing(data_to_be_processed) ## 5 different fields
print("Input processed Text : ",input_processed_text)
print("Getting Tenant ID from input_processed_text")
tenant_id = [int(i) for i in input_processed_text.split() if i.isdigit()][0]
print("Tenant ID from Input processed text : ",tenant_id)
##TFIDF Prediction
tfidf_pred,input_tfidfmatrx = input_evalution(input_processed_text,tenant_id,tfidf_matrix,tfidf_vector,df_act)
#print("TF IDF Pred : ",tfidf_pred)
#print("Input TFIDF Matrix : ",input_tfidfmatrx)
##TF_count Prediction
tf_count_pred,input_tfcountmatrx = input_evalution_count(input_processed_text,tenant_id,tf_count_matrix,count_vector,df_act)
#print("TF Count Pred : ",tf_count_pred)
#print("INput Count Matrix : ",input_tfcountmatrx)
tfidf_pred['score_new'] = tfidf_pred['score']*0.5
tf_count_pred['score_new'] = tf_count_pred['score']*0.5
tfidf_pred['flag'] = 'tfidf'
tf_count_pred['flag'] = 'tf_count'
overall_result = pd.concat([tfidf_pred,tf_count_pred])
#print("Overall Result : ",overall_result)
if len(overall_result)>0:
overall_result = overall_result.sort_values(by='score_new',ascending=False)
overall_result = overall_result.head(config.max_reccom)
#print("Overall Result : ",overall_result)
user_recommendation_list = overall_result[config.target_column].tolist()
print("USer recommendation List from event_prediction_tfidf function : ",user_recommendation_list)
return user_recommendation_list
def input_evalution(input_processed_text,tenant_id, df_train_mtrx,tfidf_vector,df_act):
print("Into Input Evaluation function")
text=input_processed_text
print("Text : ",text)
tfidf_vector=tfidf_vector
tenant_id = tenant_id
print("Tenant ID Inside INput Evaluation : ", tenant_id)
#print("TFIDF Vector : ",tfidf_vector)
df_train_mtrx=df_train_mtrx
#print("DF Train Matrix : ",df_train_mtrx)
df_train_mtrx_filtered = df_train_mtrx[df_train_mtrx[str(tenant_id)] > 0]
#print("DF Train Matrix Filtered : ",df_train_mtrx_filtered)
## Replacing Nan values in matrix with 0
df_train_mtrx_filtered_nan=np.isnan(df_train_mtrx_filtered)
input_tfidf=tfidf_vector.transform([text])
#print("Input TF IDF : ",input_tfidf)
x=input_tfidf.todense()
print("X : ",x)
df_tst = pd.DataFrame(x)
#print("Df Test Input Evaluation : ",df_tst)
scr=cosine_similarity(df_train_mtrx_filtered, df_tst)
#print("Cosine Similarity Input Evaluation : ",scr)
df_chk = pd.DataFrame()
df_chk['ticket_id']=df_train_mtrx_filtered.index
df_chk['score']=scr
print("DF CHeck Input Evaluation: ",df_chk.head())
# Filter 'df_chk' to keep rows where the 'score' is greater than 0.50
score = df_chk[df_chk['score'] > 0.50]['score'].tolist()
print("Score : ", score)
# Get the indexes where the score is above the threshold
indexes = df_chk[df_chk['score'] > 0.50].index
print("Indexes : ",indexes)
# Retrieve values from the 'df_train_mtrx' DataFrame based on the indexes
df_eval = df_act[df_act['ticket_id'].isin(df_chk[df_chk['score']>0.50]['ticket_id'])]
df_eval['score'] = score
#print("DF eval Input Evaluation: ", df_eval.head())
return df_eval, df_tst
def input_evalution_count(text, tenant_id,df_train_mtrx,count_vector,df_act):
print("Into Input Evaluation Count function")
text=text
print("Text : ",text)
tenant_id = tenant_id
print("Tenant ID inside INput EValuation Count fn : ",tenant_id)
df_train_mtrx=df_train_mtrx
#print("DF Train Matrix : ",df_train_mtrx)
df_train_mtrx_filtered = df_train_mtrx[df_train_mtrx[str(tenant_id)] > 0]
## Replacing Nan values in matrix with 0
df_train_mtrx_filtered_nan=np.isnan(df_train_mtrx_filtered)
## Transforming into COunt Vector
input_count=count_vector.transform([text])
#print("Input Count : ",input_count)
x=input_count.todense()
print("X : ",x)
df_tst = pd.DataFrame(x)
#print("DF Test in evaluation count : ",df_tst)
## Calculating cosine similarity
scr=cosine_similarity(df_train_mtrx_filtered, df_tst)
#print("Cosine Similarity inside Input evaluation : ",scr)
df_chk = pd.DataFrame()
df_chk['ticket_id']=df_train_mtrx_filtered.index
df_chk['score']=scr
print("DF CHeck Input Evaluation Count: ",df_chk.head())
# Filter 'df_chk' to keep rows where the 'score' is greater than 0.50
score = df_chk[df_chk['score'] > 0.50]['score'].tolist()
print("Score : ", score)
# Get the indexes where the score is above the threshold
indexes = df_chk[df_chk['score'] > 0.50].index
print("Indexes : ",indexes)
# Retrieve values from the 'df_train_mtrx' DataFrame based on the indexes
df_eval = df_act[df_act['ticket_id'].isin(df_chk[df_chk['score']>0.50]['ticket_id'])]
#df_eval = df_train_mtrx.iloc[indexes]
df_eval['score'] = score
#print("DF eval inside Input Evaluation Count: ", df_eval.head())
return df_eval, df_tst
Editor is loading...