Untitled
unknown
plain_text
2 years ago
5.0 kB
5
Indexable
// (1)To Plot the function and its derivatives Matlab Code clc clear all syms x real f= input(‘Enter the function f(x):’); fx= diff(f,x) fxx= diff(fx,x) D = [0, 5]; l=ezplot(f,D) set(l,‘color’,‘b’); hold on h=ezplot(fx,D); set(h,‘color’,‘r’); e=ezplot(fxx,D); set(e,‘color’,‘g’); legend(‘f’,‘fx’,‘fxx’) legend(‘Location’,‘northeastoutside’) // (2) To find the maxima and minima of the single variable function and visualize it. Matlab Code clc clear all syms x real f= input(‘Enter the function f(x):’); fx= diff(f,x); fxx= diff(fx,x); c = solve(fx) c=double(c); for i = 1:length(c) T1 = subs(fxx, x ,c(i) ); T1=double(T1); T3= subs(f, x, c(i)); T3=double(T3); if (T1==0) sprintf(‘The inflection point is x = %d’,c(i)) else if (T1 < 0) sprintf(‘The maximum point x is %d’, c(i)) sprintf(‘The maximum value of the function is %d’, T3) else sprintf(‘The minimum point x is %d’, c(i)) sprintf(‘The minimum value of the function is %d’, T3) end end cmin = min(c); cmax = max(c); D = [cmin-2, cmax+2]; ezplot(f,D) hold on plot(c(i), T3, ‘g*’, ‘markersize’, 15); end // (4) Find the volume of the region D enclosed by the surfaces z = x ^ 2 + 3y ^ 2 and z = 8 - x ^ 2 - y ^ 2 clc clear syms x y z xa = - 2; xb = 2; ya=-sqrt (2-x^2/2); yb = sqrt(2 - x ^ 2 / 2); za=x^2+3 y^2; zb = 8 - x ^ 2 - y ^ 2; I=int (int (int (1+0*z, z, za, zb), y, ya, yb), x, xa, xb) viewSolid (z, za, zb, y, ya, yb, x, xa, xb) // (5) Find the volume of the regicg cut from the cylinder x ^ 2 + y ^ 2 = 4 by the plane z = 0 and the plane x + z = 3 The limits of integration are z = 0to 3 - x, x = - root(4 - y) to sqrt(4 - y) , v = - 2to 2 clear clc syms x y z ya = - 2; yb = 2; xa = - sqrt(4 - y ^ 2); xb = sqrt(4 - y ^ 2); za =0+0^ * x+0^ * y; zb= 3 - x -0^ * y; i = int (int (int ( 1 +0 * z,z,za,zb),x,xa,xb) ,y,ya, yb) viewSolidone ( z, za, zb, x, xa, xb, y, ya, yb ) // (6) evaluting volume undersurface To find integrate integrate (x + y)/4 dy from x / 2 to x dx from 1 to 2 syms x y z int (int ((x+y)/4, y, x (2, x), x, 1, 2 ) viewSolid ( z ,0+0^ * x+0^ * y y^ * y, (x + y) / 4 ,y,x| 2,x,x,1,2) // (7) To find the volume of a solid generated by revolving a curve about the x−axis clc clearvars syms x; f = input('Enter the function: '); fL = input('Enter the interval on which the function is defined: '); yr = input('Enter the axis of rotation y = c (enter only c value): '); iL = input('Enter the integration limits: '); Volume = pi*int((f−yr)^2,iL(1),iL(2)); disp(['Volume is: ', num2str(double(Volume))]) fx = inline(vectorize(f)); xvals = linspace(fL(1),fL(2),201); xvalsr = fliplr(xvals); xivals = linspace(iL(1),iL(2),201); xivalsr = fliplr(xivals); xlim = [fL(1) fL(2)+0.5]; ylim = fx(xlim); figure('Position',[100 200 560 420]) subplot(2,1,1) hold on; plot(xvals,fx(xvals),'−b','LineWidth',2); fill([xvals xvalsr],[fx(xvals) ones(size(xvalsr))*yr],[0.8 0.8 0.8],'FaceAlpha',0.8) plot([fL(1) fL(2)],[yr yr],'−r','LineWidth',2); legend('Function Plot','Filled Region','Axis of Rotation','Location','Best'); title('Function y=f(x) and Region'); set(gca,'XLim',xlim) xlabel('x−axis'); ylabel('y−axis'); subplot(2,1,2) hold on; plot(xivals,fx(xivals),'−b','LineWidth',2); fill([xivals xivalsr],[fx(xivals) ones(size(xivalsr))*yr],[0.8 0.8 0.8],'FaceAlpha',0.8) fill([xivals xivalsr],[ones(size(xivals))*yr −fx(xivalsr)+2*yr],[1 0.8 0.8],'FaceAlpha' ,0.8) plot(xivals,−fx(xivals)+2*yr,'−m','LineWidth',2); plot([iL(1) iL(2)],[yr yr],'−r','LineWidth',2); title('Rotated Region in xy−Plane'); set(gca,'XLim',xlim) xlabel('x−axis'); ylabel('y−axis'); [X,Y,Z] = cylinder(fx(xivals)−yr,100); figure('Position',[700 200 560 420]) Z = iL(1) + Z.*(iL(2)−iL(1)); surf(Z,Y+yr,X,'EdgeColor','none','FaceColor','flat','FaceAlpha',0.6); hold on; plot([iL(1) iL(2)],[yr yr],'−r','LineWidth',2); xlabel('X−axis'); ylabel('Y−axis'); zlabel('Z−axis'); view(22,11); // (8) The volume of the solid generated by the revolving the curve y = root x about the line y = 1 from x = 1 to x = 4 is given by the following code: clear clc syms x f(x)=sqrt(x); % Given function yr=1; % Axis of revolution y=yr I=[0,4]; % Interval of integration a=I(1);b=I(2); vol=pi*int((f(x)-yr)^2,a,b); disp('Volume of solid of revolution is: '); disp(vol); % Visualization if solid of revolution fx=matlabFunction(f); xv = linspace(a,b,101); % Creates 101 points from a to b [X,Y,Z] = cylinder(fx(xv)-yr); Z = a+Z.*(b-a); % Extending the default unit height of the %cylinder profile to the interval of integration. surf(Z,Y+yr,X) % Plotting the solid of revolution about y=yr hold on; plot([a b],[yr yr],'-r','LineWidth',2); % Plotting the line y=yr view(22,11); % 3-D graph viewpoint specification xlabel('X-axis');ylabel('Y-axis');zlabel('Z-axis');
Editor is loading...