Untitled
unknown
plain_text
a year ago
5.0 kB
8
Indexable
import cv2
import numpy as np
import pytesseract
from picamera2 import Picamera2
import time
import os
# Define office worker plate numbers
office_worker_plates = ['PJH1123', 'PPT1109'] # Add more if needed
# Folder to save cropped plates
output_directory = "cropped_plates"
os.makedirs(output_directory, exist_ok=True)
# Initialize camera
picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration(main={"format": 'XRGB8888', "size": (320, 240)})) # Lower resolution
picam2.start()
# Function to add status text to the cropped image
def add_status_text(cropped_img, text):
# Add a black rectangle at the bottom of the image
h, w = cropped_img.shape[:2]
result_img = cv2.copyMakeBorder(cropped_img, 0, 50, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])
# Choose font and position for the status text
font = cv2.FONT_HERSHEY_SIMPLEX
position = (10, h + 30)
font_scale = 1
font_color = (255, 255, 255)
thickness = 2
# Add the text at the bottom of the image
cv2.putText(result_img, text, position, font, font_scale, font_color, thickness, lineType=cv2.LINE_AA)
return result_img
# Function to process and detect plate number
def recognize_license_plate(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Convert to grayscale
# Apply bilateral filter instead of Gaussian blur to reduce noise and maintain edges (more efficient)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
# Edge detection using Canny (optimized)
edged = cv2.Canny(gray, 30, 150)
# Find contours in the edged image
cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]
screenCnt = None
# Loop over contours to find the plate
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True) # Adjust for more accuracy
# Assume a contour with four points is the license plate
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None:
return None, None
# Draw a green box around the detected plate
cv2.drawContours(img, [screenCnt], -1, (0, 255, 0), 3)
# Create a mask and crop the license plate area
mask = np.zeros(gray.shape, np.uint8)
new_image = cv2.drawContours(mask, [screenCnt], 0, 255, -1)
new_image = cv2.bitwise_and(img, img, mask=mask)
# Now crop the image to the detected plate region
(x, y) = np.where(mask == 255)
(topx, topy) = (np.min(x), np.min(y))
(bottomx, bottomy) = (np.max(x), np.max(y))
if topx >= 0 and topy >= 0 and bottomx > topx and bottomy > topy:
Cropped = gray[topx:bottomx + 1, topy:bottomy + 1]
else:
Cropped = None
if Cropped is not None:
# Use Tesseract to extract text from the cropped license plate area
config = '--psm 8' # Single-line mode
text = pytesseract.image_to_string(Cropped, config=config)
# Filter out non-alphanumeric characters and restrict length
text = ''.join(filter(str.isalnum, text)).upper()
# Check if the text length is valid (6-7 characters)
if 6 <= len(text) <= 7:
return text, Cropped
return None, None
# Main loop to capture and process images from the camera
while True:
start_time = time.time() # Record the start time
frame = picam2.capture_array()
# Perform license plate recognition
plate_number, cropped_plate = recognize_license_plate(frame)
if plate_number:
if plate_number in office_worker_plates:
status = "Officer"
else:
status = "Outsider"
# Add the status text to the cropped plate image
if cropped_plate is not None:
cropped_with_status = add_status_text(cropped_plate, status)
# Generate a unique filename using timestamp for every saved image
timestamp = int(time.time())
filename = os.path.join(output_directory, f"{plate_number}_{status}_{timestamp}.jpg")
# Save the cropped image with the status text
cv2.imwrite(filename, cropped_with_status)
# Display the cropped plate with the status in a separate window
cv2.imshow("Cropped Plate", cropped_with_status)
print(f"Saved: {filename}")
# Display the camera feed with the green bounding box
cv2.imshow("Camera Preview", frame)
# Ensure it processes frames close to 1 second intervals
elapsed_time = time.time() - start_time
sleep_time = max(1.0 - elapsed_time, 0) # Adjust to maintain ~1 second between captures
time.sleep(sleep_time)
# Quit if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
Editor is loading...
Leave a Comment