Untitled
them. Program: import matplotlib.pyplot as plt from scipy import stats x = [5,7,8,7,2,17,2,9,4,11,12,9,6] y = [99,86,87,88,111,86,103,87,94,78,77,85,86] slope, intercept, r, p, std_err = stats.linregress(x, y) def myfunc(x): return slope * x + intercept mymodel = list(map(myfunc, x)) plt.scatter(x, y) plt.plot(x, mymodel) plt.show() import numpy from sklearn import linear_model x = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1) y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) logr = linear_model.LogisticRegression() logr.fit(x,y) predicted = logr.predict(numpy.array([2.09]).reshape(-1,1)) print(predicted)
Leave a Comment