Untitled
unknown
plain_text
a year ago
2.8 kB
5
Indexable
% Load data
load IRIS_IN.csv; % Input data
load IRIS_OUT.csv; % Target output
input = IRIS_IN;
% One-hot encoding for target output
numClasses = 3; % Number of classes
target = zeros(size(IRIS_OUT, 1), numClasses);
for i = 1:size(IRIS_OUT, 1)
target(i, IRIS_OUT(i)) = 1; % Assuming IRIS_OUT has values 1, 2, 3
end
% Initialize weights
WeightIn = 2 * rand(4, 10) - 1; % Weights from input to hidden layer
WeightHidden = 2 * rand(10, numClasses) - 1; % Weights from hidden to output layer
% Parameters
epoch = 100;
trainDataSize = 75;
testDataSize = 75;
% Preallocate RMSE array
RMSE = zeros(epoch, 1);
for currentEpoch = 1:epoch
Tot_Error = 0;
for currentTrainDataIndex = 1:trainDataSize
% Forward propagation
Hidden = input(currentTrainDataIndex, :) * WeightIn;
logsigHidden = logsig(Hidden);
Output = logsigHidden * WeightHidden;
Output = logsig(Output);
% Error calculation using mean squared error
DeltaOutput = target(currentTrainDataIndex, :) - Output;
Tot_Error = Tot_Error + sum(DeltaOutput.^2); % Accumulate squared error
% Backpropagation
DeltaHidden = (DeltaOutput * WeightHidden') .* dlogsig(logsigHidden); % Apply derivative element-wise
WeightHidden = WeightHidden + 0.45 * logsigHidden' * DeltaOutput;
% Update input weights
WeightIn = WeightIn + 0.45 * input(currentTrainDataIndex, :)' * DeltaHidden;
end
% Calculate and store RMSE
RMSE(currentEpoch) = sqrt(Tot_Error / trainDataSize);
end
% Plot RMSE
figure;
plot(1:epoch, RMSE);
legend('Training');
ylabel('RMSE');
xlabel('Epoch');
% Testing phase
Tot_Correct = 0;
OutputList = zeros(testDataSize, numClasses); % Preallocate output list
OneHotOutput = zeros(testDataSize, numClasses); % Initialize one-hot vector
for currentTestDataIndex = trainDataSize + 1:trainDataSize + testDataSize
Hidden = input(currentTestDataIndex, :) * WeightIn;
logsigHidden = logsig(Hidden);
Output = logsigHidden * WeightHidden;
Output = logsig(Output);
% Store the raw output for analysis
OutputList(currentTestDataIndex - trainDataSize, :) = Output;
% Get predicted class (index)
[~, predictedClass] = max(Output); % Get predicted class (index)
% Set the predicted class to 1 in the one-hot vector
OneHotOutput(currentTestDataIndex - trainDataSize, predictedClass) = 1;
% Compare with original class
if predictedClass == IRIS_OUT(currentTestDataIndex) % Adjusting for 1-based index
Tot_Correct = Tot_Correct + 1;
end
end
% Display results
OutputList
OneHotOutput
Tot_Percent = Tot_Correct / testDataSize;
fprintf('Test Correct Percentage: %f\n', Tot_Percent);
Editor is loading...
Leave a Comment