Untitled
unknown
python
2 years ago
1.1 kB
3
Indexable
# Первый вариант class Net(nn.Module): def __init__(self, n_in_neurons, n_hidden_neurons_1, n_hidden_neurons_2, n_out_neurons): super(Net, self).__init__() self.fc1 = nn.Linear(n_in_neurons, n_hidden_neurons_1) self.act1 = nn.PReLU() self.fc2 = nn.Linear(n_hidden_neurons_1, n_hidden_neurons_2) self.act2 = nn.ReLU() self.fc3 = nn.Linear(n_hidden_neurons_2, n_out_neurons) self.act3 = nn.ELU() def forward(self, x): x = self.fc1(x) x = self.act1(x) x = self.fc2(x) x = self.act2(x) x = self.fc3(x) x = self.act3(x) return x # Второй вариант neuro_def_model = keras.Sequential([keras.layers.Dense(20, activation='relu', input_shape=(X_train.shape[1],)), keras.layers.Dense(1) ]) neuro_def_model.compile(optimizer='adam', loss='mean_squared_error') neuro_def_model.fit(X_train, Y_train, epochs=200, batch_size=32, validation_data=(X_test, Y_test))
Editor is loading...
Leave a Comment