kalmanfilter
unknown
matlab
2 years ago
2.7 kB
6
Indexable
%% % Simulate an AR(2) process. rng(0) % Set the seed (just done for the lecture!) N = 500; A0_start = -0.95; A0_stop = -0.45; A1 = linspace( A0_start,A0_start, N); A2 = linspace( A0_start,A0_start, N) %A1(N/2:end) = A0_stop; % Abruptly change a_1. y = zeros(N,1); e = randn( N, 1 ); for k=3:N % Implement filter by hand to allow a1 to change. y(k) = e(k) - A1(k)*y(k-1) - A2(k)*y(k-2); end rng(0) % Set the seed (just done for the lecture!) N = 500; A0_start = -0.95; A0_stop = -0.45; A1 = linspace( A0_start,A0_start, N); A2 = linspace( A0_start,A0_start, N) %A1(N/2:end) = A0_stop; % Abruptly change a_1. y = zeros(N,1); e = randn( N, 1 ); for k=3:N % Implement filter by hand to allow a1 to change. y(k) = e(k) - A1(k)*y(k-1) - A2(k)*y(k-2); end % Define the state space equations . A = [ 1 0 ; 0 1 ] ; Re = [ 0.004 0 ; 0 0 ] ; % State covariance matrix Rw = 1.25 % Observation variance % Set some initialvalues Rxx_1 = 10*eye ( 2 ) ; % Initialstate variance xtt_1 = [ 0 0 ]'; % Initialstatevalues % Vectors to store values in Xsave = zeros( 2 ,N) ; % Stored states ehat = zeros( 1 ,N) ; % Pr e d i c t i on r e s i d u a l yt1 = zeros( 1 ,N) ; % One s t e p p r e d i c t i o n yt2 = zeros( 1 ,N) ; % Two s t e p p r e d i c t i o n % The f i l t e r use data up to t ime tô€€€1 to p r e d i c t v a lue at t , % then update using the prediction error. Why do we start % from t=3? Why stop at N-2? for t=3:N-2 Ct = [ -y(t-1) -y(t-2) ]; yhat(t) = C*x_t1; % One-step prediction, \hat{y}_{t|t-1}. ehat( t ) = y(t)-yhat(t); % One-step prediction error, \hat{e}_t = y_t - \hat{y}_{t|t-1} % update Ryy = C*Rx_t1*C' + Rw; % R_{t|t-1}^{y,y} = C R_{t|t-1}^{x,x} + Rw Kt = Kt = Rx_t1*C'/Ry; % K_t = R^{x,x}_{t|t-1} C^T inv( R_{t|t-1}^{y,y} ) xt_t = x_t1 + Kt*( h_et(t) ); % x_{t|t}= x_{t|t-1} + K_t ( y_t - Cx_{t|t-1} ) Rxx = Rx_t1 - Kt*Ry*Kt'; % R^{x,x}_{t|t} = R^{x,x}_{t|t-1} - K_t R_{t|t-1}^{y,y} K_t^T %predict the next state x_t1 = A*xt_t(:,t-1); % x_{t|t-1} = A x_{t-1|t-1} Rxx_1 = A*Rx_t*A' + Re; % R^{x,x}_{t+1|t} = A R^{x,x}_{t|t} A^T + Re C1 = [ -y(t) -y(t-1) ]; % C_{t+1|t} y2 = Ck*xt_t(:,t); % \hat{y}_{t+1|t} = C_{t+1|t} A x_{t|t}
Editor is loading...