Untitled
unknown
python
a year ago
776 B
4
Indexable
def return_predictions(images_paths, model, classes=None): ''' Create bounding box generator ''' for image in images_paths: results = model.predict(image, classes=classes) for r in results: boxes = [box for box in r.boxes] names = [model.names[int(box.cls)] for box in r.boxes] yield boxes, names, image def get_avg_depth(xyxy, depth_coords, depth_values): # depths_coords = dict( # coords=depth_coords, # ) # top left x_points, y_points = depth_coords xmin, ymin, xmax, ymax = xyxy filtered_points = np.logical_and.reduce(( x_points >= xmin, x_points <= xmax, y_points >= ymin, y_points <= ymax )) avg_depth = np.mean(depth_values[filtered_points]) return avg_depth
Editor is loading...
Leave a Comment