Untitled
unknown
plain_text
a year ago
3.2 kB
2
Indexable
Never
def make_Majorana(N): # Make 'N' Majorana fermions. Set of N Hermitian matrices psi_i, i=1,..N # obeying anti-commutation relations {psi_i,psi_j} = δ_{ij} X = np.array([[0, 1], [1, 0]]) Y = np.array([[0, -1j], [1j, 0]]) Z = np.array([[1, 0], [0, -1]]) I = np.array([[1, 0], [0, 1]]) psi = dict() if simpl == 0: for i in range(1, N+1): if (i % 2) == 1: # For ex: On odd numbered Majorana with N = 8, we have --> XIII, ZXII, ZZXI, ZZZX matlist = [Z] * int((i-1)/2) matlist.append(X) matlist = matlist + [I] * int((N/2 - (i+1)/2)) psi[i] = 1/np.sqrt(2)*reduce(np.kron, matlist) else: # On even numbered with N = 8 --> YIII, ZYII, ZZYI, ZZZY matlist = [Z] * int((i - 2) / 2) matlist.append(Y) matlist = matlist + [I] * int((N/2 - i/2)) psi[i] = 1/np.sqrt(2)*reduce(np.kron, matlist) if simpl == 1: for i in range(1, N+1): if (i % 2) == 1: # For ex: On odd numbered Majorana with N = 8, we have --> XIII, IXII, IIXI, IIIX matlist = [I] * int((i-1)/2) matlist.append(X) matlist = matlist + [I] * int((N/2 - (i+1)/2)) psi[i] = 1/np.sqrt(2)*reduce(np.kron, matlist) else: # On even numbered with N = 8 --> YIII, IYII, IIYI, IIIY matlist = [I] * int((i - 2) / 2) matlist.append(Y) matlist = matlist + [I] * int((N/2 - i/2)) psi[i] = 1/np.sqrt(2)*reduce(np.kron, matlist) for i in range(1, N+1): for j in range(1, N+1): if simpl == 0: # Not checking this for simplified H yet. if i != j: if np.allclose(psi[i] @ psi[j], -psi[j] @ psi[i]) == False: print ("Does not satisfy algebra") if i == j: if np.allclose(psi[i] @ psi[j] + psi[j] @ psi[i], np.eye(int(2**(N/2)))) == False: print ("Does not satisfy algebra for i=j") return psi def make_Hamiltonian(psi, N, instances, J_squared): # Creates multiple realisations of the SYK Hamiltonian # Variance of couplings is given by 'J_squared * 3!/N^3'. H = 0 J = dict() sigma_sq = 6.*J_squared/(N**3) sigma = math.sqrt(sigma_sq) for i in range(1, N+1): for j in range(i+1, N+1): for k in range(j+1, N+1): for l in range(k+1, N+1): J[i, j, k, l] = np.random.normal(loc=0, scale=sigma,size=instances) #print (J[i, j, k, l]) M = psi[i] @ psi[j] @ psi[k] @ psi[l] if np.allclose(M, M.conj().T) == True: H = H + np.array([element * M for element in J[i, j, k, l]]) else: if np.allclose(M, -M.conj().T) == True: M *= complex(0,1.) H = H + np.array([element * M for element in J[i, j, k, l]]) return H