Untitled
unknown
plain_text
2 years ago
5.2 kB
3
Indexable
for training- from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input from tensorflow.keras.preprocessing import image from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D import ssl try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context # Load the pre-trained InceptionV3 model without the top (fully connected) layers base_model = InceptionV3(weights='imagenet', include_top=False) # Add custom top layers for fine-tuning x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) # Adjust the number of units based on binary or multi-class classification # Combine the base model and custom top layers model = Model(inputs=base_model.input, outputs=predictions) for layer in base_model.layers: layer.trainable = False model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) test_datagen = ImageDataGenerator(rescale=1./255) batch_size = 32 # Define paths to your train and validation datasets train_dataset_path = '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/Train_dataset_images/' validation_dataset_path = '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/Validation_dataset_images/' import pandas as pd import os # Create DataFrames with file paths and labels train_invoice_df = pd.DataFrame({'filepath': [os.path.join(train_dataset_path, 'invoice', f) for f in os.listdir(os.path.join(train_dataset_path, 'invoice'))], 'label': 'invoice'}) train_non_invoice_df = pd.DataFrame({'filepath': [os.path.join(train_dataset_path, 'non_invoice', f) for f in os.listdir(os.path.join(train_dataset_path, 'non_invoice'))], 'label': 'non_invoice'}) validation_invoice_df = pd.DataFrame({'filepath': [os.path.join(validation_dataset_path, 'invoice', f) for f in os.listdir(os.path.join(validation_dataset_path, 'invoice'))], 'label': 'invoice'}) validation_non_invoice_df = pd.DataFrame({'filepath': [os.path.join(validation_dataset_path, 'non_invoice', f) for f in os.listdir(os.path.join(validation_dataset_path, 'non_invoice'))], 'label': 'non_invoice'}) # Concatenate the dataframes train_df = pd.concat([train_invoice_df, train_non_invoice_df], ignore_index=True) validation_df = pd.concat([validation_invoice_df, validation_non_invoice_df], ignore_index=True) # Shuffle the dataframes train_df = train_df.sample(frac=1).reset_index(drop=True) validation_df = validation_df.sample(frac=1).reset_index(drop=True) # Create data generators train_generator = train_datagen.flow_from_dataframe( train_df, x_col='filepath', y_col='label', target_size=(299, 299), batch_size=batch_size, class_mode='binary' ) validation_generator = test_datagen.flow_from_dataframe( validation_df, x_col='filepath', y_col='label', target_size=(299, 299), batch_size=batch_size, class_mode='binary' ) epochs =10 print("Number of training samples:", len(train_generator)) print("Number of validation samples:", len(validation_generator)) print("Class indices for training:", train_generator.class_indices) print("Class indices for validation:", validation_generator.class_indices) model.fit( train_generator, steps_per_epoch=train_generator.samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=validation_generator.samples // batch_size ) model.save('fine_tuned_invoice_model.h5') There is one sample code- model = Sequential() model.add(Conv2D(input_shape = (32,32,1), filters = 8, kernel_size = (5,5),activation = "relu", padding = "same" )) model.add(MaxPooling2D(pool_size = (2,2))) model.add(Conv2D(filters = 8, kernel_size = (3,3),activation = "relu", padding = "same" )) model.add(MaxPooling2D(pool_size = (2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(units = 256, activation = "relu")) model.add(Dropout(0.2)) model.add(Dense(units = noOfClasses, activation = "softmax")) model.compile(loss = "categorical_crossentropy", optimizer=("Adam"), metrics = ["accuracy"]) batch_size = 250 hist = model.fit_generator(dataGen.flow(x_train, y_train, batch_size = batch_size), validation_data = (x_validation, y_validation), epochs = 15, steps_per_epoch = x_train.shape[0]//batch_size, shuffle = 1) Can we modify our code to create these layers and also implement how it is shown here in sample code for training.
Editor is loading...
Leave a Comment