Untitled
unknown
plain_text
a year ago
2.7 kB
7
Indexable
llm = model_categories["l_model"]
user_to_email = config["configurable"]["user_to_email"]
output = [SystemMessage(content=f"""
You are a system that parses a user's meeting request{user_query} and must return valid JSON with these exact keys:
1. "data_issues"
2. "meeting_start"
3. "meeting_end"
4. "attendees"
5. "email_subject"
6. "email_body"
Requirements:
- "data_issues":
- If there's ambiguity about which user to add (e.g., two similar names in the user_to_email map:{user_to_email}), provide a clarification message here.
- If a requested user is not found in user_to_email, provide an appropriate error message here.
- If there are no issues, leave this key as an empty string ("").
- "meeting_start" / "meeting_end":
- Must be ISO 8601 UTC timestamps (e.g., "2025-01-17T14:00:00Z").
- If user doesn't provide a start/end time, leave them empty or use defaults.
- "attendees":
- A list of attendee email addresses.
- "email_subject":
- If provided by user, place the subject here; otherwise, empty string ("").
- "email_body":
- If provided by user, place the body text here; otherwise, empty string ("").
No additional keys beyond these six should be in your output.
Your final answer must be valid JSON, for example:
Example 1 (Everything is fine, no issues):
```json
{{
"data_issues": "",
"meeting_start": "2025-02-01T15:00:00Z",
"meeting_end": "2025-02-01T16:00:00Z",
"attendees": ["alice@example.com"],
"email_subject": "Weekly Sync",
"email_body": "Discuss project status"
}}
"""
)]
response_str = llm.invoke(output)
try:
response = json.loads(response_str.content)
except json.JSONDecodeError:
return "Error: LLM response is not valid JSON."
if response.get("data_issues",True):
return response["data_issues"] if response["data_issues"]!=True else "Data issues"
Cahnge this entire thing into this format but with my data
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# And a query intented to prompt a language model to populate the data structure.
joke_query = "Tell me a joke."
# Set up a parser + inject instructions into the prompt template.
parser = JsonOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
chain = prompt | model | parser
chain.invoke({"query": joke_query})Editor is loading...
Leave a Comment