Untitled
unknown
python
a year ago
1.2 kB
11
Indexable
import numpy as np import pandas as pd from sklearn.ensemble import ExtraTreesRegressor from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures, RobustScaler from tpot.export_utils import set_param_recursive # NOTE: Make sure that the outcome column is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1) training_features, testing_features, training_target, testing_target = \ train_test_split(features, tpot_data['target'], random_state=42) # Average CV score on the training set was: -0.21622483325971734 exported_pipeline = make_pipeline( PolynomialFeatures(degree=2, include_bias=False, interaction_only=False), RobustScaler(), ExtraTreesRegressor(bootstrap=False, max_features=0.9000000000000001, min_samples_leaf=1, min_samples_split=3, n_estimators=100) ) # Fix random state for all the steps in exported pipeline set_param_recursive(exported_pipeline.steps, 'random_state', 42) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features)
Editor is loading...
Leave a Comment