Untitled
unknown
plain_text
2 years ago
1.2 kB
5
Indexable
dfv = df.loc[~df['Queue Name'].isin(queues_to_remove)].groupby(['MM-YY'], as_index=False).apply(fn) dfv = dfv.groupby(['MM-YY'],as_index=False).agg({'Offer':'sum','Answer':'sum','Abandon':'sum','weighted_avg_ASA':'sum'}) # then convert to minutes dfv['weighted_average_ASA_minutes'] = dfv['weighted_avg_ASA'] / (ms_in_an_hour) * 60 # Abandon %- calculated as # of abandons / # of offer # Answer % - calculated as # of answers / # of offer dfv['Abandon %'] = 100 * (dfv['Abandon'] / dfv['Offer']) dfv['Answer %'] = 100 * (dfv['Answer'] / dfv['Offer']) months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] dfv['Month'] = dfv['MM-YY'].apply(lambda x: x[:3]) dfv['Year'] = dfv['MM-YY'].apply(lambda x: x[4:]) dfv['Month'] = pd.Categorical(dfv['Month'], categories=months, ordered=True) file_nm = "summary_statistics_overall_{0}_new_queues.xlsx".format(e) with pd.ExcelWriter(file_nm) as writer: for i in ['22','23']: dfz = dfv.loc[dfv['Year'] == i].sort_values(by='Month').transpose().reset_index() dfz.columns = dfz.iloc[-3] dfz.to_excel(writer,sheet_name=i,index=False)
Editor is loading...