Untitled
unknown
plain_text
3 years ago
1.9 kB
11
Indexable
from sklearn.model_selection import train_test_split
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
from sklearn.datasets import load_digits
digits = load_digits()
print(digits.DESCR)
digits.target[::100]
digits.data.shape
digits.images[13]
figure, axes= plt.subplots(nrows = 4, ncols = 6, figsize=(6,4))
for item in zip(axes.ravel(), digits.images, digits.target):
axes, image, target = item
axes.imshow(image, cmap=plt.cm.gray_r)
axes.set_xticks([])
axes.set_yticks([])
axes.set_title(target)
plt.tight_layout()
from sklearn.datasets import load_digits
digits = load_digits()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( digits.data, digits.target, random_state=11)
X_train.shape
X_test.shape
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=11, test_size=0.20)
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X=X_train, y = y_train)
predicted = knn.predict(X = X_test)
expected = y_test
predicted[:20]
expected[:20]
wrong = [(p, e) for (p, e) in zip (predicted, expected) if p != e]
wrong
from sklearn.datasets import load_iris
iris = load_iris()
print(iris.DESCR)
iris.data.shape
iris.target.shape
iris.target_names
iris.feature_names
pd.set_option('max_columns', 5)
pd.set_option('display.width', None)
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters= 3 , random_state = 11)
kmeans.fit(iris.data)
print(kmeans.labels_[0:50])
iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
iris_df['species']= [iris.target_names[i] for i in iris.target]
iris_df.head()
pd.set_option('precision', 2)
iris_df.describe()
import seaborn as sns
sns.set(font_scale=1.1)
sns.set_style('whitegrid')
grid = sns.pairplot(data = iris_df, vars = iris_df.columns[0:4], hue = 'species')
Editor is loading...