Untitled
unknown
plain_text
2 years ago
1.9 kB
6
Indexable
from sklearn.model_selection import train_test_split import pandas as pd import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier import numpy as np from sklearn.datasets import load_digits digits = load_digits() print(digits.DESCR) digits.target[::100] digits.data.shape digits.images[13] figure, axes= plt.subplots(nrows = 4, ncols = 6, figsize=(6,4)) for item in zip(axes.ravel(), digits.images, digits.target): axes, image, target = item axes.imshow(image, cmap=plt.cm.gray_r) axes.set_xticks([]) axes.set_yticks([]) axes.set_title(target) plt.tight_layout() from sklearn.datasets import load_digits digits = load_digits() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( digits.data, digits.target, random_state=11) X_train.shape X_test.shape X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=11, test_size=0.20) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(X=X_train, y = y_train) predicted = knn.predict(X = X_test) expected = y_test predicted[:20] expected[:20] wrong = [(p, e) for (p, e) in zip (predicted, expected) if p != e] wrong from sklearn.datasets import load_iris iris = load_iris() print(iris.DESCR) iris.data.shape iris.target.shape iris.target_names iris.feature_names pd.set_option('max_columns', 5) pd.set_option('display.width', None) from sklearn.cluster import KMeans kmeans = KMeans(n_clusters= 3 , random_state = 11) kmeans.fit(iris.data) print(kmeans.labels_[0:50]) iris_df = pd.DataFrame(iris.data, columns = iris.feature_names) iris_df['species']= [iris.target_names[i] for i in iris.target] iris_df.head() pd.set_option('precision', 2) iris_df.describe() import seaborn as sns sns.set(font_scale=1.1) sns.set_style('whitegrid') grid = sns.pairplot(data = iris_df, vars = iris_df.columns[0:4], hue = 'species')
Editor is loading...