Untitled

 avatar
unknown
plain_text
2 years ago
1.4 kB
3
Indexable
%===============================================================
% == PERHITUNGAN SUDUT DAN WAKTU PEMUTUS KRITIS DENGAN METODE ==
% ==          KRITERIA SAMA LUAS UNTUK CONTOH 5.1(A)          ==
% ==============================================================
format shortG
% Data pada sistem :
H = 5;
f0 = 60;
Xd = 0.3;
XT = 0.2;
XL1 = 0.3;
XL2 = 0.3;
S = 0.6 + j*0.074;
V = 1 + j*0;
%Arus yang mengalir ke infinite bus :
I = conj (S)/conj (V);
%Reaktansi transfer antara tegangan terminal dan infinite bus sebelum
%gangguan :
X1 = Xd + XT + ((XL1*XL2)/(XL1+XL2));
Xd 0.3:
X7=0.2:
XL1 0.31
XL2 0.31
S 0.8 3*0.0741
V 1 1*0:
%Arus yang mengalir ke intinite bus1
I conj (S) /cong (V)1
%Reaktansi transfer antara tegangan terminal darn infinite bus sebelun gangguan
X1 = Xd + XT ((XL1*XL2) / (XLL XL2));
%Reaktansi transfer antara tegangan termi nal dan intinite bus selama gangguan
X2 = 1,8;
%Reaktansi antara tegangan terminal dan infinite bus setelah gangguan
X3 = 0.8:
Harga rl dan r2 :
rl = X1/X21
r2 = X1 /X31
%Tegangan internal transient
e = V + j*X1*I;
E = abs (e);
%Sudut kerja awal  : 
Pmak = E*V/X1;
delta0 = 180/pi*asin (real (S)/(Pmak));
%Ayunan sudut maksimum :
deltamak = 180-delta0;
%Dalam radian:
delta0r = delta0*pi/180;
deltamakr = deltamak*pi/180;
%Sudut pemutus kritis :
deltak = 180/pi*acos (real (S)/Pmak*(deltamakr-delta0r)+cos(deltamak*pi/180) -r1*cos(delta0*pi/180))/(r2-r1));
%Dalam radian : 
deltakr = deltak*pi/180;
Editor is loading...