Untitled

mail@pastecode.io avatar
unknown
plain_text
8 months ago
4.2 kB
4
Indexable
Never
import random
import string


MyString = "Ria_Sharma*58828" #Ideal String
population = 500  # population size
pc = 0.5  # crossover probability
pm = 0.9  # mutation probability
length = len(MyString)
generations = 500 # no.of generations

#generates random strings
def generate_random_string(): 
    parts = MyString.split('_')
    first_name = parts[0]
    last_name, student_id = parts[1].split('*')

    first_name_length = len(first_name)
    last_name_length = len(last_name)
    student_id_length = len(student_id)

    generated_first_name = ''.join(random.choice(string.ascii_letters) for _ in range(first_name_length))
    generated_last_name = ''.join(random.choice(string.ascii_letters) for _ in range(last_name_length))
    generated_student_id = ''.join(random.choice(string.digits) for _ in range(student_id_length))

    generated_string = f"{generated_first_name}_{generated_last_name}*{generated_student_id}"
    
    return generated_string

#Randomly chooses a crossover point and implements crossover
def crossover(parent1, parent2):
    crossover_point = random.randint(0, length - 1) 
    child1 = parent1[:crossover_point] + parent2[crossover_point:]
    child2 = parent2[:crossover_point] + parent1[crossover_point:]
    return child1, child2

# mutates the two childeren randomly
def mutation(child1, child2):
    mutated_child1 = list(child1)
    mutated_child2 = list(child2)
    
    for i in range(length):
        if random.random() < pm:
            mutated_child1[i] = random.choice(string.ascii_letters + string.digits)
        if random.random() < pm:
            mutated_child2[i] = random.choice(string.ascii_letters + string.digits)

    mutated_child1 = ''.join(mutated_child1) 
    mutated_child2 = ''.join(mutated_child2)

    return mutated_child1, mutated_child2

#Calculates fitness
def fitness(input_string, target_string):
    fit_score = sum(1 for i in range(length) if input_string[i] == target_string[i])
    fitness = fit_score / length
    return fitness

# Generates the initial population
individuals = [generate_random_string() for _ in range(population)]

# Evolution loop over generations
for generation in range(generations):  
    # Calculate fitness scores for individuals in the population and stores them in a list
    fitness_scores = [fitness(individual, MyString) for individual in individuals]

    # Check if the termination condition
    for i, individual in enumerate(individuals):
        if fitness_scores[i] >= 0.98:  
            print(f"Perfect match found in generation {generation + 1}!")
            print(f"Individual: {individual}, Fitness: {fitness_scores[i]}")
            exit() 

    # Sort individuals based on fitness scores
    sorted_individuals = [individual for _, individual in sorted(zip(fitness_scores, individuals), reverse=True)]

    # Keep the top population fittest individuals
    individuals = sorted_individuals[:population]

    # Perform crossover and mutation
    new_individuals = []
    for _ in range(population):
        parent1 = random.choice(individuals)
        parent2 = random.choice(individuals)
    
        if random.random() < pc:
            child1, child2 = crossover(parent1, parent2)
        else:
            child1, child2 = parent1, parent2
        
        if random.random() < pm:
            child1, child2 = mutation(child1, child2)
        
        new_individuals.append(child1)
        new_individuals.append(child2)

    # Append mutated children to the population
    individuals.extend(new_individuals)

    # Keep only the top population fittest individuals after appending mutated children and set them to the new population
    fitness_scores = [fitness(individual, MyString) for individual in individuals]
    sorted_individuals = [individual for _, individual in sorted(zip(fitness_scores, individuals), reverse=True)]
    individuals = sorted_individuals[:population]

    
    best_individual = sorted_individuals[0]
    best_fitness = fitness_scores[0]
    print(f"Generation: {generation + 1}, Best Individual: {best_individual}, Fitness: {best_fitness}")
    
   
Leave a Comment