Untitled
unknown
plain_text
4 years ago
20 kB
5
Indexable
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
// for lex
#define MAXLEN 256
int idx; //here
int fdiv,var;
// Token types
typedef enum {
UNKNOWN, END, ENDFILE,
INT, ID,
ADDSUB, MULDIV,
ASSIGN,
LPAREN, RPAREN,
OR,XOR,AND, //here
INCDEC //here
} TokenSet;
TokenSet getToken(void);
TokenSet curToken = UNKNOWN;
char lexeme[MAXLEN];
// Test if a token matches the current token
int match(TokenSet token);
// Get the next token
void advance(void);
// Get the lexeme of the current token
char *getLexeme(void);
// for parser
#define TBLSIZE 64
// Set PRINTERR to 1 to print error message while calling error()
// Make sure you set PRINTERR to 0 before you submit your code
#define PRINTERR 1
// Call this macro to print error message and exit the program
// This will also print where you called it in your program
#define error(errorNum) { \
if (PRINTERR) \
fprintf(stderr, "error() called at %s:%d: ", __FILE__, __LINE__); \
err(errorNum); \
}
// Error types
typedef enum {
UNDEFINED, MISPAREN, NOTNUMID, NOTFOUND, RUNOUT, NOTLVAL, DIVZERO, SYNTAXERR
} ErrorType;
// Structure of the symbol table
typedef struct {
int val;
char name[MAXLEN];
} Symbol;
// Structure of a tree node
typedef struct _Node {
TokenSet data;
int rig;
int val;
char lexeme[MAXLEN];
struct _Node *left;
struct _Node *right;
} BTNode;
int sbcount = 0;
Symbol table[TBLSIZE];
// Initialize the symbol table with builtin variables
void initTable(void);
// Get the value of a variable
int getval(char *str);
// Set the value of a variable
int setval(char *str, int val);
// Make a new node according to token type and lexeme
BTNode *makeNode(TokenSet tok, const char *lexe);
// Free the syntax tree
void freeTree(BTNode *root);
BTNode *factor(void); //here
BTNode *assign_expr(void);
BTNode *or_expr(void);
BTNode *or_expr_tail(BTNode *left);
BTNode *xor_expr(void);
BTNode *xor_expr_tail(BTNode *left);
BTNode *and_expr(void);
BTNode *and_expr_tail(BTNode *left);
BTNode *addsub_expr(void);
BTNode *addsub_expr_tail(BTNode *left);
BTNode *muldiv_expr(void);
BTNode *muldiv_expr_tail(BTNode *left);
BTNode *unary_expr(void);
void statement(void);
// Print error message and exit the program
void err(ErrorType errorNum);
// for codeGen
// Evaluate the syntax tree
int evaluateTree(BTNode *root);
// Print the syntax tree in prefix
void printPrefix(BTNode *root);
/*============================================================================================
lex implementation
============================================================================================*/
TokenSet getToken(void)
{
int i = 0;
char c = '\0';
while ((c = fgetc(stdin)) == ' ' || c == '\t');
if (isdigit(c)) {
lexeme[0] = c;
c = fgetc(stdin);
i = 1;
while (isdigit(c) && i < MAXLEN) {
lexeme[i] = c;
++i;
c = fgetc(stdin);
}
ungetc(c, stdin);
lexeme[i] = '\0';
return INT;
} else if (c == '+' || c == '-') { //here
lexeme[0] = c;
c=fgetc(stdin);
if(c=='+' || c=='-'){
lexeme[1]=c;
lexeme[2]='\0';
return INCDEC;
}
else{
ungetc(c,stdin);
lexeme[1] = '\0';
return ADDSUB;
}
} else if (c == '*' || c == '/') {
lexeme[0] = c;
lexeme[1] = '\0';
return MULDIV;
}else if (c == '&') { //here
lexeme[0] = c;
lexeme[1] = '\0';
return AND;
}else if (c == '|') {
lexeme[0] = c;
lexeme[1] = '\0';
return OR;
}else if (c == '^') {
lexeme[0] = c;
lexeme[1] = '\0';
return XOR; //to here
}else if (c == '\n') {
lexeme[0] = c; //here
lexeme[1] = '\0';
return END;
} else if (c == '=') {
strcpy(lexeme, "=");
return ASSIGN;
} else if (c == '(') {
strcpy(lexeme, "(");
return LPAREN;
} else if (c == ')') {
strcpy(lexeme, ")");
return RPAREN;
} else if (isalpha(c)) { //here
lexeme[0] = c;
c=fgetc(stdin);
i=1;
while((isalpha(c) || c=='_' || isdigit(c)) && i<MAXLEN){
lexeme[i]=c;
i++;
c=getc(stdin);
}
ungetc(c,stdin);
lexeme[i] = '\0';
return ID;
} else if (c == EOF) {
return ENDFILE;
} else {
return UNKNOWN;
}
}
void advance(void) {
curToken = getToken();
}
int match(TokenSet token) {
if (curToken == UNKNOWN)
advance();
return token == curToken;
}
char *getLexeme(void) {
return lexeme;
}
/*============================================================================================
parser implementation
============================================================================================*/
void initTable(void) {
strcpy(table[0].name, "x");
table[0].val = 0;
strcpy(table[1].name, "y");
table[1].val = 0;
strcpy(table[2].name, "z");
table[2].val = 0;
sbcount = 3;
}
int getval(char *str) {
int i = 0;
for (i = 0; i < sbcount; i++)
if (strcmp(str, table[i].name) == 0)
return table[i].val;
if (sbcount >= TBLSIZE)
error(RUNOUT);
if (i>=sbcount) error(NOTFOUND); //here
strcpy(table[sbcount].name, str);
table[sbcount].val = 0;
sbcount++;
return 0;
}
int setval(char *str, int val) {
int i = 0;
for (i = 0; i < sbcount; i++) {
if (strcmp(str, table[i].name) == 0) {
table[i].val = val;
return val;
}
}
if (sbcount >= TBLSIZE)
error(RUNOUT);
strcpy(table[sbcount].name, str);
table[sbcount].val = val;
sbcount++;
return val;
}
BTNode *makeNode(TokenSet tok, const char *lexe) {
BTNode *node = (BTNode*)malloc(sizeof(BTNode));
strcpy(node->lexeme, lexe);
node->data = tok;
node->val = 0;
node->left = NULL;
node->right = NULL;
return node;
}
void freeTree(BTNode *root) {
if (root != NULL) {
freeTree(root->left);
freeTree(root->right);
free(root);
}
}
//here
void back(char *lex){
int len=strlen(lex);
for(int i=len-1;i>=0;i--){
ungetc(lex[i],stdin);
}
}
//assign_expr := ID ASSIGN assign_expr | or_expr
BTNode *assign_expr(void) {
BTNode *node = NULL,*left=NULL;
if (match(ID)) {
left = makeNode(ID, getLexeme());
advance();
if (!match(ASSIGN)) {
back(getLexeme());
back(left->lexeme);
advance();
return or_expr();
} else {
node = makeNode(ASSIGN, getLexeme());
advance();
node->left = left;
node->right = assign_expr();
return node;
}
} else {
return or_expr();
}
}
//or_expr := xor_expr or_expr_tail
//or_expr_tail := OR xor_expr or_expr_tail | NiL
BTNode *or_expr(void) {
BTNode *node = xor_expr();
return or_expr_tail(node);
}
BTNode *or_expr_tail(BTNode *left) {
BTNode *node = NULL;
if (match(OR)) {
node = makeNode(OR, getLexeme());
advance();
node->left = left;
node->right = xor_expr();
return or_expr_tail(node);
} else {
return left;
}
}
//xor_expr := and_expr xor_expr_tail
//xor_expr_tail := XOR and_expr xor_expr_tail | NiL
BTNode *xor_expr(void) {
BTNode *node = and_expr();
return xor_expr_tail(node);
}
BTNode *xor_expr_tail(BTNode *left) {
BTNode *node = NULL;
if (match(XOR)) {
node = makeNode(XOR, getLexeme());
advance();
node->left = left;
node->right = and_expr();
return xor_expr_tail(node);
} else {
return left;
}
}
//and_expr := addsub_expr and_expr_tail
//and_expr_tail := AND addsub_expr and_expr_tail | NiL
BTNode *and_expr(void) {
BTNode *node = addsub_expr();
return and_expr_tail(node);
}
BTNode *and_expr_tail(BTNode *left) {
BTNode *node = NULL;
if (match(AND)) {
node = makeNode(AND, getLexeme());
advance();
node->left = left;
node->right = addsub_expr();
return and_expr_tail(node);
} else {
return left;
}
}
//addsub_expr := muldiv_expr addsub_expr_tail
//addsub_expr_tail := ADDSUB muldiv_expr addsub_expr_tail | NiL
BTNode *addsub_expr(void) {
BTNode *node = muldiv_expr();
return addsub_expr_tail(node);
}
BTNode *addsub_expr_tail(BTNode *left) {
BTNode *node = NULL;
if (match(ADDSUB)) {
node = makeNode(ADDSUB, getLexeme());
advance();
node->left = left;
node->right = muldiv_expr();
return addsub_expr_tail(node);
} else {
return left;
}
}
//muldiv_expr := unary_expr muldiv_expr_tail
//muldiv_expr_tail := MULDIV unary_expr muldiv_expr_tail | NiL
BTNode *muldiv_expr(void) {
BTNode *node = unary_expr();
return muldiv_expr_tail(node);
}
BTNode *muldiv_expr_tail(BTNode *left) {
BTNode *node = NULL;
if (match(MULDIV)) {
node = makeNode(MULDIV, getLexeme());
fdiv=1;
advance();
node->left = left;
node->right = unary_expr();
return muldiv_expr_tail(node);
} else {
return left;
}
}
//unary_expr := ADDSUB unary_expr | factor
BTNode *unary_expr(void) {
BTNode *node = NULL,*left=NULL;
if (match(ADDSUB)) {
node = makeNode(ADDSUB, getLexeme());
advance();
node->left = makeNode(INT,"0");
node->right = unary_expr();
} else {
node=factor();
}
return node;
}
//to here
// factor := INT | ADDSUB INT |
// ID | ADDSUB ID |
// ID ASSIGN expr |
// LPAREN expr RPAREN |
// ADDSUB LPAREN expr RPAREN
//factor := INT | ID | INCDEC ID | LPAREN assign_expr RPAREN
BTNode *factor(void) { //here
BTNode *retp = NULL, *left = NULL;
if (match(INT)) {
retp = makeNode(INT, getLexeme());
advance();
} else if (match(ID)) {
retp = makeNode(ID, getLexeme());
if(fdiv==1) var=1;
advance();
} else if (match(INCDEC)) {
retp = makeNode(INCDEC, getLexeme());
retp->left = makeNode(INT, "1");
advance();
if (match(ID)) {
retp->right = makeNode(ID, getLexeme());
advance();
}
} else if (match(LPAREN)) {
advance();
retp = assign_expr();
if (match(RPAREN))
advance();
else
error(MISPAREN);
} else {
error(NOTNUMID);
}
return retp;
}
// statement := ENDFILE | END | expr END
void statement(void) { //here
BTNode *retp = NULL;
int temp;
if (match(ENDFILE)) {
printf("MOV r0 [0]\n");
printf("MOV r1 [4]\n");
printf("MOV r2 [8]\n");
printf("EXIT 0\n");
exit(0);
} else if (match(END)) {
//printf(">> ");
advance();
} else {
retp = assign_expr();
if (match(END)) {
idx=0;
temp=evaluateTree(retp);
freeTree(retp);
//as long as the term be divided is variable, no matter whether its value is zero or not, the statement is vaild
fdiv=0;
var=0;
advance();
} else {
error(SYNTAXERR);
}
}
}
void err(ErrorType errorNum) {
printf("EXIT 1\n"); //here
if (PRINTERR) {
fprintf(stderr, "error: ");
switch (errorNum) {
case MISPAREN:
fprintf(stderr, "mismatched parenthesis\n");
break;
case NOTNUMID:
fprintf(stderr, "number or identifier expected\n");
break;
case NOTFOUND:
fprintf(stderr, "variable not defined\n");
break;
case RUNOUT:
fprintf(stderr, "out of memory\n");
break;
case NOTLVAL:
fprintf(stderr, "lvalue required as an operand\n");
break;
case DIVZERO:
fprintf(stderr, "divide by constant zero\n");
break;
case SYNTAXERR:
fprintf(stderr, "syntax error\n");
break;
default:
fprintf(stderr, "undefined error\n");
break;
}
}
exit(0);
}
/*============================================================================================
codeGen implementation
============================================================================================*/
int evaluateTree(BTNode *root) { //here
int retval = 0, lv = 0, rv = 0;
if (root != NULL) {
switch (root->data) {
case ID:
retval = getval(root->lexeme);
root->rig=idx;
for(int i=0;i<sbcount;i++){
if(strcmp(root->lexeme,table[i].name)==0){
printf("MOV r%d [%d]\n",idx,4*i);
break;
}
}
idx++;
break;
case INT:
retval = atoi(root->lexeme);
root->rig=idx;
printf("MOV r%d %d\n",idx,retval);
idx++;
break;
case XOR:
lv = evaluateTree(root->left);
rv = evaluateTree(root->right);
lv^ rv;
printf("XOR r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
idx--;
break;
case AND:
lv = evaluateTree(root->left);
rv = evaluateTree(root->right);
lv & rv;
printf("AND r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
break;
case OR:
lv = evaluateTree(root->left);
rv = evaluateTree(root->right);
lv | rv;
printf("OR r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
break;
case ASSIGN:
rv = evaluateTree(root->right);
retval = setval(root->left->lexeme, rv);
for(int i=0;i<sbcount;i++){
if(strcmp(root->left->lexeme,table[i].name)==0){
printf("MOV [%d] r%d\n",4*i,root->right->rig);
idx++;
break;
}
}
root->rig=root->right->rig;
break;
case ADDSUB:
case MULDIV:
case INCDEC:
lv = evaluateTree(root->left);
rv = evaluateTree(root->right);
if (strcmp(root->lexeme, "++") == 0) {
retval = lv + rv;
setval(root->right->lexeme,rv+1);
printf("ADD r%d r%d\n",root->right->rig,root->left->rig);
for(int i=0;i<sbcount;i++){
if(strcmp(root->right->lexeme,table[i].name)==0){
printf("MOV [%d] r%d\n",4*i,root->right->rig);
break;
}
}
root->rig=root->right->rig;
idx--;
} else if (strcmp(root->lexeme, "--") == 0) {
retval = lv - rv;
setval(root->right->lexeme,rv-1);
printf("SUB r%d r%d\n",root->right->rig,root->left->rig);
for(int i=0;i<sbcount;i++){
if(strcmp(root->right->lexeme,table[i].name)==0){
printf("MOV [%d] r%d\n",4*i,root->right->rig);
break;
}
}
root->rig=root->right->rig;
idx--;
} else if (strcmp(root->lexeme, "+") == 0) {
retval = lv + rv;
printf("ADD r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
idx--;
} else if (strcmp(root->lexeme, "-") == 0) {
retval = lv - rv;
printf("SUB r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
idx--;
} else if (strcmp(root->lexeme, "*") == 0) {
retval = lv * rv;
printf("MUL r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
idx--;
} else if (strcmp(root->lexeme, "/") == 0) {
if (rv == 0){
if(fdiv==1 && var==1) retval=lv;
else error(DIVZERO);
} else retval = lv / rv;
printf("DIV r%d r%d\n",root->left->rig,root->right->rig);
root->rig=root->left->rig;
idx--;
}
break;
default:
retval = 0;
}
}
return retval;
}
void printPrefix(BTNode *root) {
if (root != NULL) {
printf("%s ", root->lexeme);
printPrefix(root->left);
printPrefix(root->right);
}
}
/*============================================================================================
main
============================================================================================*/
// This package is a calculator
// It works like a Python interpretor
// Example:
// >> y = 2
// >> z = 2
// >> x = 3 * y + 4 / (2 * z)
// It will print the answer of every line
// You should turn it into an expression compiler
// And print the assembly code according to the input
// This is the grammar used in this package
// You can modify it according to the spec and the slide
// statement := ENDFILE | END | expr END
// expr := term expr_tail
// expr_tail := ADDSUB term expr_tail | NiL
// term := factor term_tail
// term_tail := MULDIV factor term_tail| NiL
// factor := INT | ADDSUB INT |
// ID | ADDSUB ID |
// ID ASSIGN expr |
// LPAREN expr RPAREN |
// ADDSUB LPAREN expr RPAREN
int main() {
initTable();
//printf(">> ");
while (1) {
statement();
}
return 0;
}
Editor is loading...