Untitled
unknown
plain_text
a year ago
1.4 kB
5
Indexable
% Step 1: Train the model % Load pre-trained MobileNetV2 net = mobilenetv2; % Specify the folders containing the images for each face face1_folder = 'Face1Images'; face2_folder = 'Face2Images'; % Create an imageDatastore for each face imds_face1 = imageDatastore(face1_folder, 'LabelSource', 'foldernames'); imds_face2 = imageDatastore(face2_folder, 'LabelSource', 'foldernames'); % Preprocess images for MobileNetV2 inputSize = net.Layers(1).InputSize; augmentedTrainingData_face1 = augmentedImageDatastore(inputSize(1:2), imds_face1); augmentedTrainingData_face2 = augmentedImageDatastore(inputSize(1:2), imds_face2); % Replace the last layer of MobileNetV2 for transfer learning numClasses = 2; % Two classes: face1 and face2 layers = [ net.Layers(1:end-3) fullyConnectedLayer(numClasses, 'Name', 'fc') softmaxLayer('Name', 'softmax') classificationLayer('Name', 'classoutput')]; % Set options for transfer learning options = trainingOptions('adam', ... 'InitialLearnRate', 0.001, ... 'MaxEpochs', 10, ... 'MiniBatchSize', 32, ... 'Shuffle', 'every-epoch', ... 'Verbose', true, ... 'Plots', 'training-progress'); % Fine-tune MobileNetV2 on the dataset net_finetuned = trainNetwork(augmentedTrainingData_face1, layers, options); % Save the fine-tuned model save('finetuned_mobilenetv2.mat', 'net_finetuned', '-v7.3'); disp('Model training complete.');
Editor is loading...
Leave a Comment