Untitled
unknown
plain_text
a year ago
1.4 kB
9
Indexable
% Step 1: Train the model
% Load pre-trained MobileNetV2
net = mobilenetv2;
% Specify the folders containing the images for each face
face1_folder = 'Face1Images';
face2_folder = 'Face2Images';
% Create an imageDatastore for each face
imds_face1 = imageDatastore(face1_folder, 'LabelSource', 'foldernames');
imds_face2 = imageDatastore(face2_folder, 'LabelSource', 'foldernames');
% Preprocess images for MobileNetV2
inputSize = net.Layers(1).InputSize;
augmentedTrainingData_face1 = augmentedImageDatastore(inputSize(1:2), imds_face1);
augmentedTrainingData_face2 = augmentedImageDatastore(inputSize(1:2), imds_face2);
% Replace the last layer of MobileNetV2 for transfer learning
numClasses = 2; % Two classes: face1 and face2
layers = [
net.Layers(1:end-3)
fullyConnectedLayer(numClasses, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'classoutput')];
% Set options for transfer learning
options = trainingOptions('adam', ...
'InitialLearnRate', 0.001, ...
'MaxEpochs', 10, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'Verbose', true, ...
'Plots', 'training-progress');
% Fine-tune MobileNetV2 on the dataset
net_finetuned = trainNetwork(augmentedTrainingData_face1, layers, options);
% Save the fine-tuned model
save('finetuned_mobilenetv2.mat', 'net_finetuned', '-v7.3');
disp('Model training complete.');
Editor is loading...
Leave a Comment