Untitled
unknown
python
4 years ago
874 B
5
Indexable
iso_code = "VEN" import pandas as pd from datetime import datetime as dt df = pd.read_csv("WHO-COVID-19-global-data (2021).csv") df = df[df["iso_code"] == iso_code] df["date"] = df["date"].apply(lambda d: dt.strptime(d, "%m/%d/%Y")) print(f'Maximum total_deaths: {int(df["total_deaths"].max()) if pd.notna(df["total_deaths"].max()) else "NaN"}') print(f'Maximum icu_beds used: {int(df["icu_patients"].max()) if pd.notna(df["icu_patients"].max()) else "NaN"}') print(f'Maximum hosp_patients: {int(df["hosp_patients"].max()) if pd.notna(df["hosp_patients"].max()) else "NaN"}') print(f'Maximum total_vacinations: {int(df["total_vaccinations"].max()) if pd.notna(df["total_vaccinations"].max()) else "NaN"}') print(f'First date data provided: {(dt.strftime(df["date"].min(), "%#m/%#d/%Y"))}') # for Unix, use format string %-m/%-d/%Y to remove leading zeros
Editor is loading...