Untitled
import pandas as pd # Sample data data = { 'Salesperson': ['John', 'Jane', 'Tom', 'Alice', 'Mike'], 'January Sales': [5000, 4000, 6000, 4500, 7000], 'February Sales': [5500, 4500, 6200, 4800, 7500], 'March Sales': [6000, 5000, 7000, 5500, 8000], 'Sales Target': [15000, 15000, 18000, 16000, 20000] } # Create DataFrame df = pd.DataFrame(data) # Calculate total sales df['Total Sales'] = df[['January Sales', 'February Sales', 'March Sales']].sum(axis=1) # Calculate commission (5% of total sales) df['Commission'] = df['Total Sales'] * 0.05 # Calculate bonus df['Bonus'] = df['Total Sales'].apply(lambda x: 500 if x >= 1.1 * df['Sales Target'][df['Total Sales'] == x].values[0] else 0) # Check if target was met df['Target Met'] = df['Total Sales'] >= df['Sales Target'] df['Target Met'] = df['Target Met'].apply(lambda met: 'Yes' if met else 'No') # Rank salespeople by total sales df['Rank'] = df['Total Sales'].rank(ascending=False, method='dense').astype(int) # Sort by rank df = df.sort_values('Rank') # Display results print(df[['Salesperson', 'Total Sales', 'Commission', 'Bonus', 'Target Met', 'Rank']]) # Export to a CSV file (optional) df.to_csv('sales_performance_report.csv', index=False)
Leave a Comment