Untitled
unknown
plain_text
2 years ago
3.3 kB
8
Indexable
import numpy as np
import tensorflow as tf
import pytest
class TestApproximateEqual:
def _prepare_input(self, inputs_info):
assert 'tensor1:0' in inputs_info
assert 'tensor2:0' in inputs_info
tensor1_shape = inputs_info['tensor1:0']
tensor2_shape = inputs_info['tensor2:0']
inputs_data = {}
inputs_data['tensor1:0'] = np.random.uniform(-10, 10, tensor1_shape).astype(np.float32)
inputs_data['tensor2:0'] = np.random.uniform(-10, 10, tensor2_shape).astype(np.float32)
return inputs_data
def create_approximate_equal_net(self, input1_shape, input2_shape):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
tensor1 = tf.compat.v1.placeholder(tf.float32, input1_shape, 'tensor1')
tensor2 = tf.compat.v1.placeholder(tf.float32, input2_shape, 'tensor2')
approx_equal_op = tf.raw_ops.ApproximateEqual(x=tensor1, y=tensor2, tolerance=0.01)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input1_shape=[2, 3], input2_shape=[2, 3]),
dict(input1_shape=[3, 4, 5], input2_shape=[3, 4, 5]),
dict(input1_shape=[1, 2, 3, 4], input2_shape=[1, 2, 3, 4]),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_approximate_equal_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
# Execute the original TensorFlow model
tf_net, _ = self.create_approximate_equal_net(**params)
ie_device, precision, ir_version, temp_dir, use_legacy_frontend = (
ie_device, precision, ir_version, temp_dir, use_legacy_frontend)
with self._ngraph_capture() as captured:
self._test(tf_net, None, ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
# Extract the inputs to the model from captured tensors
inputs_info = self._extract_input_info(captured)
# Prepare inputs for ApproximateEqual check
input_data = self._prepare_input(inputs_info)
# Execute the TensorFlow model
with tf.compat.v1.Session() as sess:
original_output = sess.run(tf_net, feed_dict=input_data)
# Execute the TensorFlow model again with ApproximateEqual check
with self._approximation_check() as checker:
self._test(tf_net, None, ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
# Extract the inputs to the model from captured tensors
inputs_info = self._extract_input_info(checker)
# Prepare inputs for ApproximateEqual check
input_data = self._prepare_input(inputs_info)
# Execute the TensorFlow model with ApproximateEqual check
with tf.compat.v1.Session() as sess:
approx_equal_output = sess.run(tf_net, feed_dict=input_data)
# Perform the ApproximateEqual check
assert np.all(approx_equal_output)
Editor is loading...
Leave a Comment