Untitled
unknown
plain_text
2 years ago
1.2 kB
15
Indexable
username = os.getlogin() higher_ed = pd.read_excel(r"C:\Users\{}\HIP Investor Dropbox\HIP Investor Team Folder\Ania Resources\Python\Data_Complete_Input.xlsx".format(username)) #Sets up classification by the columne in raw data called "Type" (so here just change your peer group column name) #Also gets rid of NAs for peer groups that only had NAs (this was blocking the process, when running the code) classification = list(higher_ed['Type'].unique()) classification = list(filter(lambda value: type(value) != float or not math.isnan(value), classification)) print(classification) #This one loops the code around the peer groups by setting classtype per the column "Type" #Second part of the code (after the space) is an actual code for running whatever we want to have (in this case it's a correlation heatmap) for classtype in classification: higher_ed_by_class = higher_ed[higher_ed['Type'] == classtype] plt.figure(figsize=(45, 30)) plt.title(classtype) sns.heatmap(higher_ed_by_class.corr()) heatmap = sns.heatmap(higher_ed_by_class.corr(), vmin=-1, vmax=1, annot=True) plt.savefig('heatmap_per_class_{}.jpg'.format(classtype))
Editor is loading...