Untitled
def solution(matrix): def is_valid_diagonal(x, y, dx, dy): cx, cy, i = x, y, 0 # track first num is 2 or 0 pattern = [2, 0] first_num = 0 while 0 <= cx + dx < len(matrix) and 0 <= cy + dy < len(matrix[0]): cx += dx cy += dy if i == 0: first_num = pattern.index(matrix[cx][cy]) if i % 2 == 0 and matrix[cx][cy] != pattern[first_num]: return False elif i % 2 == 1 and matrix[cx][cy] != pattern[first_num + 1 % 2]: return False i += 1 # diagonal is valid if 2, 0 is in line return i > 0 q = [] dirs = [(1, 1), (-1, -1), (-1, 1), (1, -1)] diagonals = 0 # get all initial positions of 1 for row in range(len(matrix)): for col in range(len(matrix[0])): if matrix[row][col] == 1: q.append((row, col)) # for each 1 in the matrix while q: x, y = q.pop() # get all diagonals at 1 starting positions for dx, dy in dirs: # count valid diagonals if is_valid_diagonal(x, y, dx, dy): diagonals += 1 return diagonals print(solution(matrix))
Leave a Comment