Untitled
unknown
python
a year ago
818 B
116
Indexable
import numpy as np from sklearn.metrics import r2_score from sklearn.linear_model import LinearRegression # Parameters X = 200 # Lambda (mean and variance) for the Poisson distribution N = 1000 # Number of samples # Step 1: Sample from a Poisson distribution N times samples = np.random.poisson(X, N) # Step 2: Calculate the cumulative sum of the array cumulative_sum = np.cumsum(samples) # Step 3: Calculate the R^2 of the cumulative sum # The independent variable will be the indices, and the dependent variable will be the cumulative sum indices = np.arange(1, N + 1).reshape(-1, 1) # Reshape for sklearn model = LinearRegression().fit(indices, cumulative_sum) predicted_cumulative_sum = model.predict(indices) r_squared = r2_score(cumulative_sum, predicted_cumulative_sum) print(f"R^2 value: {r_squared}")
Editor is loading...
Leave a Comment