Untitled
unknown
plain_text
a year ago
2.7 kB
5
Indexable
grouped_df = df.groupby(['transaction_date', 'label']).agg({ 'total_monthly_ton_dil': 'sum', 'MO_dealer_monthly_ton_GZPN': 'sum', 'KP_dealer_monthly_ton_GZPN': 'sum', 'MO_KP_dealer_monthly_ton_GZPN': 'sum', 'client_inn_dil': 'count' }).reset_index() print(grouped_df.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 48 entries, 0 to 47 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 transaction_date 48 non-null datetime64[ns] 1 label 48 non-null object 2 total_monthly_ton_dil 48 non-null float64 3 MO_dealer_monthly_ton_GZPN 48 non-null float64 4 KP_dealer_monthly_ton_GZPN 48 non-null float64 5 MO_KP_dealer_monthly_ton_GZPN 48 non-null float64 6 client_inn_dil 48 non-null int64 7 color 48 non-null object dtypes: datetime64[ns](1), float64(4), int64(1), object(2) grouped_df[grouped_df['label']=='dil_MO+KP'] transaction_date label total_monthly_ton_dil MO_dealer_monthly_ton_GZPN KP_dealer_monthly_ton_GZPN MO_KP_dealer_monthly_ton_GZPN client_inn_dil color 2 2023-01-01 dil_MO+KP 22254.615859 0.0 0.0 127292.46 13 red 6 2023-02-01 dil_MO+KP 19510.347573 0.0 0.0 118775.70 14 red 10 2023-03-01 dil_MO+KP 27612.267073 0.0 0.0 153347.45 12 red 14 2023-04-01 dil_MO+KP 26877.229672 0.0 0.0 188694.56 17 red 18 2023-05-01 dil_MO+KP 28811.344934 0.0 0.0 144392.96 18 red 22 2023-06-01 dil_MO+KP 4663.258970 0.0 0.0 92014.46 16 red 26 2023-07-01 dil_MO+KP 5537.268520 0.0 0.0 176764.37 15 red 30 2023-08-01 dil_MO+KP 4826.702861 0.0 0.0 131540.36 14 red 34 2023-09-01 dil_MO+KP 1594.082342 0.0 0.0 140163.36 12 red 38 2023-10-01 dil_MO+KP 6375.978418 0.0 0.0 128058.46 15 red 42 2023-11-01 dil_MO+KP 14768.483389 0.0 0.0 154676.25 18 red unique_clients_per_label = df.groupby(['transaction_date', 'label'])['client_inn_dil'].nunique().reset_index() unique_clients_per_label.pivot(index='transaction_date', columns='label', values='client_inn_dil') label dil_KP dil_MO dil_MO+KP Прочие transaction_date 2023-01-01 153 13 8 5392 2023-02-01 161 22 9 5527 2023-03-01 161 24 7 5775 2023-04-01 191 20 10 5958 2023-05-01 191 22 10 6053 2023-06-01 188 26 10 6228 2023-07-01 200 25 9 6356 2023-08-01 202 26 8 6520 2023-09-01 219 22 9 6708 2023-10-01 208 30 9 6749 2023-11-01 212 23 12 6761 2023-12-01 213 22 10 6831 46 2023-12-01 dil_MO+KP 5421.829860 0.0 0.0 106683.98 14 red
Editor is loading...
Leave a Comment