Untitled
unknown
plain_text
2 years ago
762 B
8
Indexable
class_values=[] for i, row in df.iterrows(): m_values = [row['M1']+row['M2']+row['M3']+row['M4']+row['M5']+row['M6']+row['M7']+row['M8']+row['M9']] n_values = [row['N1']+row['N2']+row['N3']+row['N4']+row['N5']+row['N6']+row['N7']+row['N8']+row['N9']] p_values = [row['P1']+row['P2']+row['P3']+row['P4']+row['P5']+row['P6']+row['P7']+row['P8']+row['P9']] min_val = min(3.86-sum(m_values)/9, 3.68-sum(n_values)/9, 3.4-sum(p_values)/9) if min_val == 3.86-sum(m_values)/9: class_values.append(0) elif min_val == 3.68-sum(n_values)/9: class_values.append(1) else: class_values.append(2) # Add the 'Class' column to the DataFrame df['Class'] = class_values df = df.drop(['country', 'source'], axis=1)
Editor is loading...