Untitled
import pandas as pd import matplotlib.pyplot as plt import logging def generate_visualizations(remake_df, feature_insights): try: # Pie Chart: Remake/Remaster Distribution classification_counts = remake_df['classification'].value_counts() total = classification_counts.sum() classification_counts.plot( kind='pie', autopct=lambda p: f'{p:.1f}%\n({int(p * total / 100)})', title='Remake/Remaster Distribution', figsize=(8, 8) ) plt.ylabel('') # Hide y-label for better aesthetics plt.savefig('classification_distribution.png') plt.clf() # Bar Chart: Key Features in Remakes (From LLM Insights) features = feature_insights['features'] feature_names = list(features.keys()) feature_counts = list(features.values()) plt.figure(figsize=(12, 10)) # Increased figure size for better readability plt.barh(feature_names, feature_counts, color="skyblue") plt.xlabel('Frequency') plt.ylabel('Features') plt.title('Key Features in Remakes (LLM Insights)') plt.gca().yaxis.set_tick_params(pad=10) # Add more space between the feature names plt.tight_layout() plt.savefig('feature_distribution.png') plt.clf() except Exception as e: logging.error(f"Error in generate_visualizations: {e}")
Leave a Comment