Untitled
unknown
plain_text
9 months ago
1.4 kB
7
Indexable
import pandas as pd
import matplotlib.pyplot as plt
import logging
def generate_visualizations(remake_df, feature_insights):
try:
# Pie Chart: Remake/Remaster Distribution
classification_counts = remake_df['classification'].value_counts()
total = classification_counts.sum()
classification_counts.plot(
kind='pie',
autopct=lambda p: f'{p:.1f}%\n({int(p * total / 100)})',
title='Remake/Remaster Distribution',
figsize=(8, 8)
)
plt.ylabel('') # Hide y-label for better aesthetics
plt.savefig('classification_distribution.png')
plt.clf()
# Bar Chart: Key Features in Remakes (From LLM Insights)
features = feature_insights['features']
feature_names = list(features.keys())
feature_counts = list(features.values())
plt.figure(figsize=(12, 10)) # Increased figure size for better readability
plt.barh(feature_names, feature_counts, color="skyblue")
plt.xlabel('Frequency')
plt.ylabel('Features')
plt.title('Key Features in Remakes (LLM Insights)')
plt.gca().yaxis.set_tick_params(pad=10) # Add more space between the feature names
plt.tight_layout()
plt.savefig('feature_distribution.png')
plt.clf()
except Exception as e:
logging.error(f"Error in generate_visualizations: {e}")Editor is loading...
Leave a Comment