Untitled
unknown
plain_text
2 years ago
1.3 kB
8
Indexable
def input_evalution(input_processed_text,tenant_id, df_train_mtrx,tfidf_vector,df_act):
print("Into Input Evaluation function")
text=input_processed_text
print("Text : ",text)
tfidf_vector=tfidf_vector
print("TFIDF Vector : ",tfidf_vector)
tenant_id = tenant_id
print("Tenant ID Inside INput Evaluation : ",tenant_id)
df_train_mtrx=df_train_mtrx
print("DF Train Matrix : ",df_train_mtrx)
input_tfidf=tfidf_vector.transform([text])
print("Input TF IDF : ",input_tfidf)
x=input_tfidf.todense()
print("X : ",x)
df_tst = pd.DataFrame(x)
#print("Df Test Input Evaluation : ",df_tst)
## Replacing Nan values in matrix with 0
df_train_mtrx_nan=np.isnan(df_train_mtrx)
#print("DF Train MAtrix Nan : ",df_train_mtrx_nan)
df_train_mtrx[df_train_mtrx_nan] = 0
scr=cosine_similarity(df_train_mtrx, df_tst)
print("Cosine Similarity : ",scr)
Here if you see we are getting tenant_id , and now we want to filter the df_train_mtrx by tenant_id and get only relevant matching records with tenant_id , for eg if tenant_id is 32, so only relevant records should be present.
Can we create a new matrix by filtering with tenant id on df_train_mtrx and then calculate the cosine similarity for for df_tst.
Editor is loading...