Untitled
unknown
plain_text
a year ago
5.3 kB
5
Indexable
#include "VirtualMemory.h" #include "PhysicalMemory.h" // Clears a frame by setting all its entries to 0 void clearFrame(uint64_t base_address) { for (uint64_t i = 0; i < PAGE_SIZE; i++) { PMwrite(base_address * PAGE_SIZE + i, 0); } } // Checks if the given virtual address is valid bool is_valid_address(uint64_t virtualAddress) { // Check if the address is within the valid range and if the table depth is within the number of frames if ((virtualAddress >= VIRTUAL_MEMORY_SIZE) || (TABLES_DEPTH > NUM_FRAMES)) { return false; } return true; } // DFS to find an empty frame, the maximum frame, and a frame to evict if necessary void dfs(uint64_t parent_address, uint64_t base_address, int &max_frame, word_t &empty_frame, word_t &frame_to_evict) { for (uint64_t i = 0; i < PAGE_SIZE; i++) { // Iterate over each entry in the frame word_t value; PMread(base_address + i, &value); // Read the value at the current entry if (value != 0) { // If the entry is not empty max_frame = std::max(max_frame, static_cast<int>(value)); // Update the maximum frame number dfs(base_address, value * PAGE_SIZE, max_frame, empty_frame, frame_to_evict); // Recursively call DFS on the next frame } else if (empty_frame == -1) { // If an empty frame has not been found yet empty_frame = base_address / PAGE_SIZE; // Mark this frame as empty } } // Check if the current frame is empty bool is_empty = true; for (uint64_t i = 0; i < PAGE_SIZE; i++) { word_t value; PMread(base_address + i, &value); // Read the value at the current entry if (value != 0) { // If any entry is not empty is_empty = false; // Mark the frame as not empty break; } } if (is_empty && empty_frame == -1) { // If the frame is empty and no empty frame has been found yet empty_frame = base_address / PAGE_SIZE; // Mark this frame as empty } // Update the parent to point to zero if an empty frame is found if (empty_frame != -1 && parent_address != base_address) { uint64_t parent_index = base_address / PAGE_SIZE % PAGE_SIZE; PMwrite(parent_address + parent_index, 0); // Write 0 to the parent entry } // If no empty frame is found, choose a frame to evict if (empty_frame == -1 && frame_to_evict == -1) { frame_to_evict = base_address / PAGE_SIZE; // Mark this frame as the one to evict } } // Finds a free frame by calling DFS uint64_t find_frame() { int max_frame = 0; word_t empty_frame = -1; word_t frame_to_evict = -1; dfs(0, 0, max_frame, empty_frame, frame_to_evict); // Perform DFS starting from the root if (empty_frame != -1) { return empty_frame; // Return the empty frame if found } if (frame_to_evict != -1) { clearFrame(frame_to_evict); // Clear the frame to evict return frame_to_evict; // Return the frame to evict } return max_frame + 1; // Return the next frame if no empty frame or frame to evict was found } // Translates a virtual address to a physical address uint64_t translate_address(uint64_t virtualAddress) { word_t cur_address = 0; // Start from the root frame for (word_t level = 0; level < TABLES_DEPTH; level++) { // Traverse the page table hierarchy uint64_t trans_level = (virtualAddress >> ((TABLES_DEPTH - level) * OFFSET_WIDTH)) & (PAGE_SIZE - 1); // Calculate the index for the current level word_t next_address; PMread(cur_address * PAGE_SIZE + trans_level, &next_address); // Read the address of the next frame if (next_address == 0) { // If the next frame is not allocated uint64_t new_frame = find_frame(); // Find a free frame PMwrite(cur_address * PAGE_SIZE + trans_level, new_frame); // Write the new frame to the current entry clearFrame(new_frame); // Clear the new frame next_address = new_frame; // Set the next address to the new frame } cur_address = next_address; // Move to the next frame } return cur_address * PAGE_SIZE + (virtualAddress % PAGE_SIZE); // Return the physical address } /* reads a word from the given virtual address * and puts its content in *value. * * returns 1 on success. * returns 0 on failure (if the address cannot be mapped to a physical * address for any reason) */ int VMread(uint64_t virtualAddress, word_t* value) { if (!is_valid_address(virtualAddress)) { // Check if the address is valid return 0; } uint64_t address = translate_address(virtualAddress); // Translate the virtual address to a physical address PMread(address, value); // Read the value from the physical address return 1; } /* writes a word to the given virtual address * * returns 1 on success. * returns 0 on failure (if the address cannot be mapped to a physical * address for any reason) */ int VMwrite(uint64_t virtualAddress, word_t value) { if (!is_valid_address(virtualAddress)) { // Check if the address is valid return 0; } uint64_t address = translate_address(virtualAddress); // Translate the virtual address to a physical address PMwrite(address, value); // Write the value to the physical address return 1; }
Editor is loading...
Leave a Comment