Untitled

 avatar
unknown
plain_text
2 years ago
3.7 kB
3
Indexable
async def run_recommendation():
    if request.method ==['POST']:
        param_vals=request.args.get('ticket_data')
        ## Getting all fields required for prediction
        ticket_category=param_vals['ticket_category']
        ticket_type=param_vals['ticket_type']
        ticket_item=param_vals['ticket_item']
        ticket_summary=param_vals['ticket_summary']
        ticket_severity=param_vals['ticket_severity']
        resolution_sla_violated=param_vals['resolution_sla_violated']
        reopen_count=param_vals['reopen_count']
        owner_user_id=param_vals['owner_user_id']
        role_name_encoded=param_vals['role_name_encoded']
        ticket_resolution_time=param_vals['ticket_resolution_time']
        role_name_decoded=param_vals['role_name_decoded']
        person_who_resolved=param_vals['person_who_resolved']
        
        ## Making a function call for data pre-processing
        processed_data= feature_engineering()

I have written feature_engineering function in feature_engineering.py as below-

import pandas as pd
from sklearn.preprocessing import LabelEncoder


def feature_engineering():
    ## Reading data
    ticket_data=pd.read_csv("ticket_data.csv")
    
    ## Selecting only relevant columns
    data=ticket_data[['ticket_category','ticket_type', 'ticket_item', 'ticket_summary', 'ticket_severity','ticket_resolution_date',
                  'response_sla_violated', 'resolution_sla_violated','created_date','reopen_count','person_who_resolved','owner_user_id',
                 'role_name']]
    
    # Convert the 'creation_date' and 'resolution_date' columns to datetime

    data['created_date']=pd.to_datetime(data['created_date'])
    data['ticket_resolution_date']=pd.to_datetime(data['ticket_resolution_date'])
    data['ticket_resolution_time']=data.apply(lambda row:row['ticket_resolution_date']-row['created_date'],axis=1)
    data['ticket_resolution_time'] =data['ticket_resolution_time'].apply(lambda x: x.total_seconds() / 3600)

    ## removing three columns and getting a final dataframe for building

    data.drop(columns=['response_sla_violated','ticket_resolution_date','created_date'],axis=1,inplace=True)

    ## Performing Encoding for Categorical Columns-

    label_enc= LabelEncoder()
    data['ticket_category']=label_enc.fit_transform(data['ticket_category'])
    data['ticket_type']=label_enc.fit_transform(data['ticket_type'])
    data['ticket_item']=label_enc.fit_transform(data['ticket_item'])
    data['ticket_severity']=label_enc.fit_transform(data['ticket_severity'])
    data['ticket_summary']=label_enc.fit_transform(data['ticket_summary'])
    data['resolution_sla_violated'] = label_enc.fit_transform(data['resolution_sla_violated'])

    
    return data

# Call the function
processed_data = feature_engineering()
processed_data.to_csv('processed_data.csv')

I need to pass the parameters from API like-
ticket_category=param_vals['ticket_category']
        ticket_type=param_vals['ticket_type']
        ticket_item=param_vals['ticket_item']
        ticket_summary=param_vals['ticket_summary']
        ticket_severity=param_vals['ticket_severity']
        resolution_sla_violated=param_vals['resolution_sla_violated']
        reopen_count=param_vals['reopen_count']
        owner_user_id=param_vals['owner_user_id']
        role_name_encoded=param_vals['role_name_encoded']
        ticket_resolution_time=param_vals['ticket_resolution_time']
        role_name_decoded=param_vals['role_name_decoded']
        person_who_resolved=param_vals['person_who_resolved']

to feature_engineering function so to feature_engineering() function so that it can transform my data.
Editor is loading...