Untitled
unknown
plain_text
5 months ago
5.7 kB
8
Indexable
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms, models import os import matplotlib.pyplot as plt from torchvision.models import ResNet18_Weights from tqdm import tqdm data_transforms = { 'train': transforms.Compose([ transforms.Resize((416, 416)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize((416, 416)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), } data_dir = r"C:\Users\Emman\Desktop\corn\dataset\dataset" image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=12, shuffle=True, num_workers=12) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes num_classes = len(class_names) model = models.resnet18(weights=ResNet18_Weights.DEFAULT) for name, param in model.named_parameters(): if "fc" in name: param.requires_grad = True else: param.requires_grad = False model.fc = nn.Sequential( nn.Linear(model.fc.in_features, 512), nn.ReLU(), nn.Linear(512, 3) ) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) # Training function def train_model(num_epochs=10): train_loss_history = [] val_loss_history = [] train_acc_history = [] val_acc_history = [] class_correct = {class_name: 0 for class_name in class_names} class_total = {class_name: 0 for class_name in class_names} for epoch in range(num_epochs): print(f'Epoch {epoch + 1}/{num_epochs}') for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 class_correct = {class_name: 0 for class_name in class_names} class_total = {class_name: 0 for class_name in class_names} with tqdm(total=dataset_sizes[phase], desc=f"{phase.capitalize()} Progress", unit="img") as pbar: for inputs, labels in dataloaders[phase]: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) # Track per-class accuracy for i in range(len(labels)): label = labels[i] pred = preds[i] class_total[class_names[label]] += 1 if label == pred: class_correct[class_names[label]] += 1 pbar.update(inputs.size(0)) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') if phase == 'train': train_loss_history.append(epoch_loss) train_acc_history.append(epoch_acc.item()) else: val_loss_history.append(epoch_loss) val_acc_history.append(epoch_acc.item()) # Print per-class accuracy after each phase print(f'Per-Class Accuracy for {phase}:') for class_name in class_names: acc = class_correct[class_name] / class_total[class_name] * 100 if class_total[class_name] > 0 else 0 print(f'Class {class_name}: {acc:.2f}%') print("Training complete!") return train_loss_history, val_loss_history, train_acc_history, val_acc_history def plot_loss_accuracy(train_loss, val_loss, train_acc, val_acc): plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(train_loss, label='Train Loss', color='blue', marker='o') plt.plot(val_loss, label='Val Loss', color='orange', marker='o') plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Loss over Epochs') plt.legend() plt.grid() plt.subplot(1, 2, 2) plt.plot(train_acc, label='Train Accuracy', color='green', marker='o') plt.plot(val_acc, label='Val Accuracy', color='red', marker='o') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.title('Accuracy over Epochs') plt.legend() plt.grid() plt.tight_layout() plt.show() # Main if __name__ == "__main__": train_loss, val_loss, train_acc, val_acc = train_model(num_epochs=10) # Save the model torch.save(model.state_dict(), 'corn_leaf_model.pth') print("Model saved to 'corn_leaf_model.pth'") plot_loss_accuracy(train_loss, val_loss, train_acc, val_acc)
Editor is loading...
Leave a Comment