Untitled
unknown
plain_text
6 months ago
810 B
3
Indexable
# Cleaning the data by removing non-numeric columns and any unnecessary or duplicated columns df_cleaned = df_correlation.drop(columns=['SAMPLE AREA', 'Unnamed: 15', 'SAMPLE AREA.1', 'NO3-.1'], errors='ignore') # Now calculate the Pearson correlation matrix correlation_matrix = df_cleaned.corr() # Import necessary libraries for plotting import matplotlib.pyplot as plt import seaborn as sns # Set up the matplotlib figure and create a custom diverging colormap for the gradient plt.figure(figsize=(10, 8)) # Create the heatmap with a color gradient from -1 to +1 sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', center=0, cbar_kws={'label': 'Pearson Correlation Coefficient'}) # Adding a title to the heatmap plt.title('Correlation Matrix - Gradient Heatmap') # Display the plot plt.show()
Editor is loading...
Leave a Comment