Untitled
unknown
plain_text
4 years ago
1.4 kB
10
Indexable
from scipy import optimize as opt
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
from scipy.integrate import quad
from scipy.interpolate import interp1d
result = open('final.dat','w')
cb = 223.6
cf = 14.8
pi = np.pi
m_h = 125.5
m_w = 80.4
m_z = 91.2
m_t = 173.1
v = 246.22
mw2 = lambda phi: (m_w**2)*(phi**2/v**2)
mz2 = lambda phi: (m_z**2)*(phi**2/v**2)
mt2 = lambda phi: (m_t**2)*(phi**2/v**2)
def jb(y_t):
return quad((lambda x: x**2 * (np.log(1-np.exp(-np.sqrt(x**2+y_t**2))))), 0, np.infty)[0]
def jf(z_t):
return quad((lambda x: x**2 * (np.log(1+np.exp(-np.sqrt(x**2+z_t**2))))), 0, np.infty)[0]
def V(phi,T):
lbd_0 = m_h**2/(2*v**2)
V0 = (lbd_0/4)*(phi**2 - v**2)**2
MASSA_W = ((mw2(phi)**2)*np.log(mw2(phi)/m_w**2)) -((3*mw2(phi)**2)/2) + (2*mw2(phi))*(m_w**2) - (m_w**4)/2
MASSA_Z = ((mz2(phi)**2)*np.log(mz2(phi)/m_z**2)) -((3*mz2(phi)**2)/2) + (2*mz2(phi))*(m_z**2) - (m_z**4)/2
MASSA_t = ((mt2(phi)**2)*np.log(mt2(phi)/m_t**2)) -((3*mt2(phi)**2)/2) + (2*mt2(phi))*(m_t**2) - (m_t**4)/2
V1 = (1/(64*(pi**2)))*(MASSA_W+MASSA_Z+MASSA_t)
if T!=0.0:
del_V1 = ((T**4/(2*pi**2))*((6*jb(np.sqrt(mw2(phi))/T) + (3*jb(np.sqrt(mz2(phi))/T)) - (12*jf(np.sqrt(mt2(phi))/T)))))
return V0+V1+del_V1
else:
return V0+V1
def v_linha(phi,T):
return V(phi,T)-V(1e-15,T)Editor is loading...