Untitled
unknown
plain_text
6 days ago
2.1 kB
1
Indexable
public class LongestIncreasingPath { public static int longestIncreasingPath(int[][] matrix) { int m = matrix.length; int n = matrix[0].length; int[][] memo = new int[m][n]; // Memoization array to store results int maxPath = 0; // Iterate over all cells to find the maximum increasing path for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { maxPath = Math.max(maxPath, dfs(matrix, i, j, memo)); } } return maxPath; } private static int dfs(int[][] matrix, int row, int col, int[][] memo) { // If already computed, return the memoized result if (memo[row][col] != 0) { return memo[row][col]; } int m = matrix.length; int n = matrix[0].length; int maxLength = 1; // Start with length 1 for the current cell // Directions: up, down, left, right int[][] directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; for (int[] dir : directions) { int newRow = row + dir[0]; int newCol = col + dir[1]; // Move to the new cell if it's within bounds and greater than the current cell if (newRow >= 0 && newRow < m && newCol >= 0 && newCol < n && matrix[newRow][newCol] > matrix[row][col]) { int pathLength = 1 + dfs(matrix, newRow, newCol, memo); maxLength = Math.max(maxLength, pathLength); } } // Store the result in the memoization array memo[row][col] = maxLength; return maxLength; } public static void main(String[] args) { int[][] matrix1 = {{9, 9, 4}, {6, 6, 8}, {2, 1, 1}}; System.out.println(longestIncreasingPath(matrix1)); // Output: 4 int[][] matrix2 = {{3, 4, 5}, {3, 2, 6}, {2, 2, 1}}; System.out.println(longestIncreasingPath(matrix2)); // Output: 4 int[][] matrix3 = {{1}}; System.out.println(longestIncreasingPath(matrix3)); // Output: 1 } }
Editor is loading...
Leave a Comment