C4
user_1718919
plain_text
a year ago
10 kB
7
Indexable
# Cell 4: PICS Data Processing and Main Execution
def process_pics_hours_lookup(hours_df: pd.DataFrame) -> pd.DataFrame:
"""Process the PICS hours lookup data"""
hours_lookup = hours_df[[
'Standard title', 'Weighted Monthly Hours (1.6)'
]].copy()
def parse_weighted_hours(time_str):
if pd.isna(time_str):
return 0.0
try:
if isinstance(time_str, str) and ':' in time_str:
hours, minutes = map(int, time_str.split(':')[:2])
return hours + (minutes / 60)
elif isinstance(time_str, (datetime.time, pd.Timestamp)):
return time_str.hour + (time_str.minute / 60)
return float(time_str)
except Exception as e:
logging.warning(f"Error parsing weighted hours '{time_str}': {str(e)}")
return 0.0
hours_lookup['Monthly_Hours'] = hours_lookup['Weighted Monthly Hours (1.6)'].apply(parse_weighted_hours)
hours_lookup['Standard_Title'] = hours_lookup['Standard title'].str.strip()
# Log zero hours entries
zero_hours = hours_lookup[hours_lookup['Monthly_Hours'] == 0]
if not zero_hours.empty:
logging.warning(f"Found {len(zero_hours)} standards with zero hours:")
for _, row in zero_hours.iterrows():
logging.warning(f" - {row['Standard_Title']}: {row['Weighted Monthly Hours (1.6)']}")
return hours_lookup[['Standard_Title', 'Monthly_Hours']]
def process_pics_data(
caseload_file: str,
hours_lookup_file: str,
contract_history: pd.DataFrame
) -> Dict[str, pd.DataFrame]:
"""
Process PICS caseload data and hours lookup
"""
logging.info("Processing PICS data...")
# Read hours lookup first
logging.info("Reading hours lookup data...")
hours_df, error = safe_read_excel(hours_lookup_file, skiprows=2)
if error:
logging.error(f"Failed to read hours lookup: {error}")
raise ValueError(f"Cannot process PICS data: {error}")
# Process hours lookup
hours_lookup = process_pics_hours_lookup(hours_df)
logging.info(f"Processed {len(hours_lookup)} standard titles with hours")
# Read and validate caseload data
logging.info("Reading PICS caseload data...")
caseload_df, error = safe_read_excel(caseload_file)
if error:
logging.error(f"Failed to read caseload data: {error}")
raise ValueError(f"Cannot process PICS data: {error}")
required_columns = [
'Assessor Full Name', 'Programme', 'Apprenticeship Standard Title',
'Apprenticeship Achieved Date', 'Start Date', 'Learning Expected End',
'Actual End'
]
# Validate and select columns
try:
validate_processed_data(caseload_df, required_columns, 'PICS_caseload')
df = caseload_df[required_columns].copy()
except ValueError as e:
logging.error(f"Validation failed: {str(e)}")
raise
# Rename columns for consistency
column_mapping = {
'Assessor Full Name': 'Assessor_Name',
'Programme': 'Programme_Level',
'Apprenticeship Standard Title': 'Standard_Title',
'Apprenticeship Achieved Date': 'Achieved_Date',
'Start Date': 'Start_Date',
'Learning Expected End': 'Expected_End',
'Actual End': 'Actual_End'
}
df.rename(columns=column_mapping, inplace=True)
# Clean assessor names
df['Assessor_Name'] = df['Assessor_Name'].apply(clean_name)
# Convert dates with validation and proper error handling
date_columns = ['Achieved_Date', 'Start_Date', 'Expected_End', 'Actual_End']
for col in date_columns:
df[col] = pd.to_datetime(df[col], errors='coerce')
invalid_dates = df[col].isna()
invalid_count = invalid_dates.sum()
if invalid_count > 0:
logging.warning(f"Found {invalid_count} invalid dates in {col}")
if col not in ['Achieved_Date', 'Actual_End']: # These can legitimately be null
logging.warning("Sample of rows with invalid dates:")
sample_invalid = df[invalid_dates].head()
for _, row in sample_invalid.iterrows():
logging.warning(f"Invalid {col} for {row['Assessor_Name']}: {row['Standard_Title']}")
# Clean titles and match with hours lookup
df['Standard_Title'] = df['Standard_Title'].str.strip()
# Add hours from lookup with validation
df = df.merge(
hours_lookup,
on='Standard_Title',
how='left',
validate='m:1'
)
# Check for unmatched standards
unmatched = df[df['Monthly_Hours'].isna()]['Standard_Title'].unique()
if len(unmatched) > 0:
logging.warning(f"Found {len(unmatched)} standards without matching hours:")
for title in unmatched:
logging.warning(f" - {title}")
df['Monthly_Hours'] = df['Monthly_Hours'].fillna(0)
# Create monthly snapshots with improved date handling
monthly_data = []
date_range = pd.date_range(start='2023-04-01', end='2024-03-31', freq='M')
logging.info("Generating monthly snapshots...")
for date in date_range:
month_start = date.replace(day=1)
month_end = date
logging.info(f"Processing month: {month_start.strftime('%B %Y')}")
# Get active students for this month with proper date comparison
month_mask = (
(df['Start_Date'].notna() & (df['Start_Date'] <= month_end)) &
((df['Actual_End'].isna() | (df['Actual_End'] >= month_start)) |
(df['Expected_End'].isna() | (df['Expected_End'] >= month_start)))
)
month_data = df[month_mask].copy()
if not month_data.empty:
month_data['Snapshot_Date'] = month_end
month_data['Year'] = month_end.year
month_data['Month'] = month_end.month
# Add contract info for this month
def get_assessor_contract(row):
staff_contracts = contract_history[
contract_history['Staff_Name'] == row['Assessor_Name']
]
relevant_contracts = staff_contracts[
(staff_contracts['Start_Date'] <= month_end) &
(staff_contracts['End_Date'] >= month_start)
]
if len(relevant_contracts) > 0:
positions = relevant_contracts['Position'].unique()
contract_types = relevant_contracts['Contract_Type'].unique()
# Calculate total target hours only for salaried contracts
total_target = relevant_contracts[
relevant_contracts['Contract_Type'].str.contains('Salaried', na=False)
]['Target_Hours'].sum()
return pd.Series({
'Assessor_Position': ' & '.join(positions),
'Assessor_Contract': ' & '.join(contract_types),
'Assessor_Target_Hours': total_target if total_target > 0 else None,
'Multiple_Contracts': len(relevant_contracts) > 1
})
return pd.Series({
'Assessor_Position': None,
'Assessor_Contract': None,
'Assessor_Target_Hours': None,
'Multiple_Contracts': False
})
# Add contract details for the month
contract_details = month_data.apply(get_assessor_contract, axis=1)
month_data = pd.concat([month_data, contract_details], axis=1)
monthly_data.append(month_data)
logging.info(f"Active students in {month_start.strftime('%B %Y')}: {len(month_data)}")
# Combine monthly data with empty DataFrame handling
monthly_df = pd.concat(monthly_data, ignore_index=True) if monthly_data else pd.DataFrame()
if monthly_df.empty:
logging.warning("No monthly data generated!")
return {}
# Create summaries with proper grouping
logging.info("Creating summary views...")
# Monthly summary per assessor
monthly_summary = monthly_df.groupby(
['Assessor_Name', 'Year', 'Month', 'Assessor_Position',
'Assessor_Contract', 'Multiple_Contracts']
).agg({
'Standard_Title': 'nunique',
'Monthly_Hours': 'sum',
'Assessor_Target_Hours': 'first'
}).reset_index()
monthly_summary.rename(columns={
'Standard_Title': 'Active_Students',
'Monthly_Hours': 'Required_Hours'
}, inplace=True)
# Programme level summary
programme_summary = monthly_df.groupby(
['Assessor_Name', 'Programme_Level', 'Year', 'Month']
).agg({
'Standard_Title': 'nunique',
'Assessor_Position': 'first',
'Assessor_Contract': 'first',
'Multiple_Contracts': 'first',
'Assessor_Target_Hours': 'first'
}).reset_index()
programme_summary.rename(columns={
'Standard_Title': 'Students_In_Programme'
}, inplace=True)
# Standard title summary
standard_summary = monthly_df.groupby(
['Assessor_Name', 'Standard_Title', 'Year', 'Month']
).agg({
'Monthly_Hours': 'sum',
'Assessor_Name': 'count',
'Assessor_Position': 'first',
'Assessor_Contract': 'first',
'Multiple_Contracts': 'first',
'Assessor_Target_Hours': 'first'
}).reset_index()
standard_summary.rename(columns={
'Assessor_Name': 'Students_In_Standard',
'Monthly_Hours': 'Required_Hours'
}, inplace=True)
logging.info("PICS data processing completed!")
return {
'detailed_monthly': monthly_df,
'monthly_summary': monthly_summary,
'programme_summary': programme_summary,
'standard_summary': standard_summary,
'hours_reference': hours_lookup
}Editor is loading...
Leave a Comment