Untitled
unknown
plain_text
16 days ago
2.8 kB
4
Indexable
[ERROR] 2025-03-07T13:14:16.094Z a9f5cfc1-dd96-4bb8-86de-46e02da4f96d time data "2024-03-25" doesn't match format "%m/%d/%Y", at position 1. You might want to try: - passing `format` if your strings have a consistent format; - passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format; - passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this. Traceback (most recent call last): File "/var/task/main.py", line 33, in lambda_handler response = apply_src_rules(src_df, event) File "/var/task/src/source_rules.py", line 215, in apply_src_rules input_df[["entry_date", "trade_date", "settlement_date"]] File "/opt/python/pandas/core/frame.py", line 10374, in apply return op.apply().__finalize__(self, method="apply") File "/opt/python/pandas/core/apply.py", line 916, in apply return self.apply_standard() File "/opt/python/pandas/core/apply.py", line 1063, in apply_standard results, res_index = self.apply_series_generator() File "/opt/python/pandas/core/apply.py", line 1081, in apply_series_generator results[i] = self.func(v, *self.args, **self.kwargs) File "/opt/python/pandas/core/tools/datetimes.py", line 1063, in to_datetime cache_array = _maybe_cache(arg, format, cache, convert_listlike) File "/opt/python/pandas/core/tools/datetimes.py", line 247, in _maybe_cache cache_dates = convert_listlike(unique_dates, format) File "/opt/python/pandas/core/tools/datetimes.py", line 433, in _convert_listlike_datetimes return _array_strptime_with_fallback(arg, name, utc, format, exact, errors) File "/opt/python/pandas/core/tools/datetimes.py", line 467, in _array_strptime_with_fallback result, tz_out = array_strptime(arg, fmt, exact=exact, errors=errors, utc=utc) File "strptime.pyx", line 501, in pandas._libs.tslibs.strptime.array_strptime File "strptime.pyx", line 451, in pandas._libs.tslibs.strptime.array_strptime File "strptime.pyx", line 583, in pandas._libs.tslibs.strptime._parse_with_format ValueError: time data "2024-03-25" doesn't match format "%m/%d/%Y", at position 1. You might want to try: - passing `format` if your strings have a consistent format; - passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format; - passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this. input_df[["entry_date", "trade_date", "settlement_date"]] = ( input_df[["entry_date", "trade_date", "settlement_date"]] .apply(pd.to_datetime) .astype(str)
Editor is loading...
Leave a Comment