ControlNet
unknown
python
10 months ago
1.4 kB
6
No Index
# !pip install opencv-python transformers accelerate from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL from diffusers.utils import load_image import numpy as np import torch import cv2 from PIL import Image prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" negative_prompt = "low quality, bad quality, sketches" # download an image image = load_image( "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png" ) # initialize the models and pipeline controlnet_conditioning_scale = 0.5 # recommended for good generalization controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "Chan-Y/Stable-Flash-Lightning", controlnet=controlnet, vae=vae, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() # get canny image image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) # generate image image = pipe( prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image ).images[0]
Editor is loading...
Leave a Comment