Untitled
unknown
plain_text
2 years ago
2.7 kB
21
Indexable
import streamlit as st
from textblob import TextBlob
import pandas as pd
import altair as alt
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
def convert_to_df(sentiment):
sentiment_dict = {'polarity': sentiment.polarity, 'subjectivity': sentiment.subjectivity}
sentiment_df = pd.DataFrame(sentiment_dict.items(), columns=['metric', 'value'])
return sentiment_df
def analyze_token_sentiment(docx):
analyzer = SentimentIntensityAnalyzer()
pos_list = []
neg_list = []
neu_list = []
for i in docx.split():
res = analyzer.polarity_scores(i)['compound']
if res > 0.1:
pos_list.append(i)
pos_list.append(res)
elif res <= -0.1:
neg_list.append(i)
neg_list.append(res)
else:
neu_list.append(i)
result = {'positives': pos_list, 'negatives': neg_list, 'neutral': neu_list}
return result
def main():
st.title("Sentiment Analysis NLP App")
st.subheader("Streamlit Projects")
menu = ["Home", "About"]
choice = st.sidebar.selectbox("Menu", menu)
if choice == "Home":
st.subheader("Home")
with st.form("nlpForm"):
raw_text = st.text_area("Enter Text Here")
submit_button = st.form_submit_button(label='Analyze')
# layout
col1, col2 = st.columns(2)
if submit_button:
with col1:
st.info("Results")
sentiment = TextBlob(raw_text).sentiment
st.write(sentiment)
# Emoji
if sentiment.polarity > 0:
st.markdown("Sentiment: Positive :smiley:")
elif sentiment.polarity < 0:
st.markdown("Sentiment: Negative :angry:")
else:
st.markdown("Sentiment: Neutral 😐")
# Dataframe
result_df = convert_to_df(sentiment)
st.dataframe(result_df)
# Visualization
c = alt.Chart(result_df).mark_bar().encode(
x='metric',
y='value',
color='metric'
)
st.altair_chart(c, use_container_width=True)
with col2:
st.info("Token Sentiment")
token_sentiments = analyze_token_sentiment(raw_text)
st.write(token_sentiments)
else:
st.subheader("About")
if __name__ == '__main__':
main()
Editor is loading...