Untitled
unknown
plain_text
2 years ago
1.0 kB
5
Indexable
def upsample(features, target, repeat):
features_zeros = features[target == 0]
features_ones = features[target == 1]
target_zeros = target[target == 0]
target_ones = target[target == 1]
features_upsampled = pd.concat([features_zeros] + [features_ones] * repeat)
target_upsampled = pd.concat([target_zeros] + [target_ones] * repeat)
features_upsampled, target_upsampled = shuffle(
features_upsampled, target_upsampled, random_state=1234
)
return features_upsampled, target_upsampled
features_upsampled, target_upsampled = upsample(
features_train, target_train, 11
)
RFmodel = RandomForestClassifier(random_state=1234,n_estimators=100)
RFmodel.fit(features_upsampled,target_upsampled)
RFpredic_valid = RFmodel.predict(features_valid)
RFprob_valid = RFmodel.predict_proba(features_valid)
print('Precision:',precision_score(target_valid,RFpredic_valid))
print('Recall:',recall_score(target_valid,RFpredic_valid))
print('F1 Score:', f1_score(target_valid, RFpredic_valid))Editor is loading...
Leave a Comment