Untitled
unknown
plain_text
2 years ago
2.1 kB
7
Indexable
def get_top_5_person_who_resolved(pred_data):
distance_metric='cosine'
print("pred_data: ", pred_data)
row=feature_engineering(pred_data)
print("row: ", row)
label_enc = LabelEncoder()
#row['role_name_encoded'] = label_enc.fit_transform(row['role_name'])
#row['role_name_decoded'] = label_enc.inverse_transform(row['role_name_encoded'])
# Link the X vector with index
#index = row.index.values
##Fetching the ticket data details from API
#pdb.set_trace()
ticket_data= ticket_data = pd.concat(map(pd.read_csv, ['/Analytics/venv/Jup/CAPE_ServicePlus_UC/ServicePlusIncidentData_Post_01-01-2019_Till_07-07-2019.csv', '/Analytics/venv/Jup/CAPE_ServicePlus_UC/ServicePlusTicket_Data_Till-2019-01-01.csv']), ignore_index=True)
df=feature_engineering(ticket_data)
# Sample training data with text features
train_data = df.drop(columns=['person_who_resolved',,'owner_user_id','role_name'])
output_df =df[['person_who_resolved','owner_user_id','role_name']]
# New data for similarity calculation
new_data = row
# Create TF-IDF vectorizer and fit on training data
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(train_data)
# Transform new data using the same vectorizer
X_new = vectorizer.transform(new_data)
# Calculate cosine similarity between new data and training data
similarity_matrix = cosine_similarity(X_new, X)
# Find the most similar training data indices for each new data point
similar_indices = np.where(similarity_matrix > 0.5)
print('Similar Indices',similar_indices)
# Get the corresponding output TF-IDF vectors for new data
predicted_output_data=output_df.iloc[similar_indices]
print("Predicted Output",predicted_output_data)
print("Similarity Matrix:")
print(similarity_matrix)
print("\nSimilar Data Indices with Cosine Similarity > 0.5:", similar_indices)
print("\nPredicted Output Data:")
print(predicted_output_data)
Editor is loading...